Advertisement

All Graphs Have Tree-Decompositions Displaying Their Topological Ends

  • Johannes CarmesinEmail author
Article
  • 1 Downloads

Abstract

We show that every connected graph has a spanning tree that displays all its topological ends. This proves a 1964 conjecture of Halin in corrected form, and settles a problem of Diestel from 1992.

Mathematics Subject Classification (2010)

05C63 05B35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Berger and H. Bruhn: Eulerian edge sets in locally finite graphs, Combinatorica 31 (2011), 21–38.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    N. Bowler and J. Carmesin: Infinite matroids and determinacy of games, Preprint 2013, current version available at http://arxiv.org/abs/1301.5980.zbMATHGoogle Scholar
  3. [3]
    H. Bruhn and M. Stein: On end degrees and infinite circuits in locally finite graphs, Combinatorica 27 (2007), 269–291.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    C. Carathéodory: Über die Begrenzung einfach zusammenhängender Gebiete, Math. Ann. 73 (1913), 323–370.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Carmesin: All graphs have tree-decompositions displaying their topological ends, Preprint 2015, available at http://arxiv.org/pdf/1409.6640v4.Google Scholar
  6. [6]
    J. Carmesin: On the end structure of infinite graphs, Preprint 2014, available at http://arxiv.org/pdf/1409.6640v1.Google Scholar
  7. [7]
    J. Carmesin: A short proof that every finite graph has a tree-decomposition displaying its tangles, European J. Combin. 58 (2016), 61–65.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J. Carmesin: Topological cycle matroids of infinite graphs, European J. Combin 60 (2017), 135–150.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark: k-blocks: a connectivity invariant for graphs, SIAM J. Discrete Math. 28 (2014), 1876–1891.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark: Canonical tree decompositions of finite graphs I: Existence and algorithms, J. Combin. Theory (Series B) (2016), 1–24.Google Scholar
  11. [11]
    J. Carmesin, R. Diestel, F. Hundertmark and M. Stein: Connectivity and treestructure in finite graphs, Combinatorica 34 (2014), 11–46.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    R. Diestel: Locally finite graphs with ends: a topological approach, http://arxiv.org /abs/0912.4213.Google Scholar
  13. [13]
    R. Diestel: The end structure of a graph: Recent results and open problems, Disc. Math. 100 (1992), 313–327.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    R. Diestel: Graph Theory (4th edition), Springer-Verlag, 2010, Electronic edition available at: http://diestel-graph-theory.com/index.html.CrossRefzbMATHGoogle Scholar
  15. [15]
    R. Diestel: Graph Theory (5th edition), Springer-Verlag, 2016. Electronic edition available at: http://diestel-graph-theory.com/index.html.zbMATHGoogle Scholar
  16. [16]
    R. Diestel: Ends and tangles, Abhandlungen Math. Sem. Univ. Hamburg, 2017.Google Scholar
  17. [17]
    R. Diestel and D. Kühn: Graph-theoretical versus topological ends of graphs, J. Combin. Theory (Series B) 87 (2003), 197–206.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    R. Diestel and D. Kühn: On infinite cycles I, Combinatorica 24 (2004), 68–89.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    R. Diestel and D. Kühn: On infinite cycles II, Combinatorica 24 (2004), 91–116.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    H. Freudenthal: Über die Enden topologischer Ráume und Gruppen, Math. Zeitschr. 33 (1931), 692–713.CrossRefzbMATHGoogle Scholar
  21. [21]
    H. Freudenthal: Über die Enden diskreter Ráume und Gruppen, Comment. Math. Helv. 17 (1945), 1–38.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Georgakopoulos: Infinite Hamilton cycles in squares of locally finite graphs, Advances in Mathematics 220 (2009), 670–705.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    R. Halin: Über unendliche Wege in Graphen, Math. Annalen 157 (1964), 125–137.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    R. Halin: Lattices of cuts in graphs, Abh. Math. Sem. Univ. Hamburg 61 (1991), 217–230.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Hamann and J. Pott: Transitivity conditions in infinite graphs, Combinatorica 32 (2012), 649–688.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    B. Hughes and A. Ranicki: Ends of complexes, Cambridge Tracts in Mathematics 123, Cambridge Univ. Press, 1996.CrossRefzbMATHGoogle Scholar
  27. [27]
    P. Seymour and R. Thomas: An end-faithful spanning tree counterexample, Proc. Amer. Math. Soc. 113 (1991), 1163–1171.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    M. Stein: Arboriticity and tree-packing in locally finite graphs, J. Combin. Theory (Series B) 96 (2006), 302–312.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    R. Thomas: Well-quasi-ordering infinite graphs with forbidden finite planar minor, Trans. Amer. Math. Soc. 312 (1989), 279–313.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    C. Thomassen: Infinite connected graphs with no end-preserving spanning trees, J. Combin. Theory (Series B) 54 (1992), 322–324.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2019

Authors and Affiliations

  1. 1.University of BirminghamBirminghamUK

Personalised recommendations