, Volume 39, Issue 1, pp 153–164 | Cite as

On the Size of K-Cross-Free Families

  • Andrey KupavskiiEmail author
  • János Pach
  • István Tomon


Two subsets A,B of an n-element ground set X are said to be crossing, if none of the four sets AB, A\B, B\A and X\(AB) are empty. It was conjectured by Karzanov and Lomonosov forty years ago that if a family F of subsets of X does not contain k pairwise crossing elements, then |F|=O(kn). For k=2 and 3, the conjecture is true, but for larger values of k the best known upper bound, due to Lomonosov, is |F|=O(knlogn). In this paper, we improve this bound for large n by showing that |F|=Ok(nlog*n) holds, where log* denotes the iterated logarithm function.

Mathematics Subject Classification (2010)

05D05 05C62 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Ackerman: On the maximum number of edges in topological graphs with no four pairwise crossing edges, Discrete Comput. Geom. 41 (2009), 365–375.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Ackerman and G. Tardos: On the maximum number of edges in quasi-planar graphs, J. Combin. Theory Ser. A 114 (2007), no. 3, 563–571.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P. K. Agarwal, B. Aronov, J. Pach, R. Pollack and M. Sharir: Quasi-planar graphs have a linear number of edges, Combinatorica 17 (1997), 1–9.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P. Brass, W. Moser and J. Pach: Research Problems in Discrete Geometry, Springer-Verlag, New York, 2005.zbMATHGoogle Scholar
  5. [5]
    V. Capoyleas and J. Pach: A Turán-type theorem on chords of a convex polygon, J. Comb. Theory, Ser. B 56 (1992), 9–15.CrossRefzbMATHGoogle Scholar
  6. [6]
    B. V. Cherkasky: A solution of a problem of multicommodity flows in a network, Ekonom.-Mat. Metody 13 (1977), 143–151. (In Russian.)Google Scholar
  7. [7]
    R. P. Dilworth: A decomposition theorem for partially ordered sets, Annals of Mathematics 51 (1950), 161–166.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. W. M. Dress, K. T. Huber, J. H. Koolean, V. Moulton and A. Spillner: Basic Phylogenetic Combinatorics, Cambridge University Press 2012.zbMATHGoogle Scholar
  9. [9]
    A. W. M. Dress, J. H. Koolean and V. Moulton: 4n—10, Annals of Combinatorics 8 (4) (2005), 463–471.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Edmonds and R. Giles: A min-max relation for submodular functions on graphs, in: Studies in Integer Programming (Proc. Workshop, Bonn, 1975), Ann. of Discrete Math., Vol. 1, North-Holland, Amsterdam, 1977, 185–204.Google Scholar
  11. [11]
    T. Fleiner: The size of 3-cross-free families, Combinatorica 21 (2001), 445–448.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Frank, A. V. Karzanov and A. Sebő: On integer multi ow maximization, SIAM J. Discrete Math. 10 (1997), 158–170.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S. Grünewald, J. H. Koolen, V. Moulton and T. Wu: The size of 3-compatible, weakly compatible split systems, J. Appl. Math. Comput. 40 (2012), 249–259.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. V. Karzanov: Combinatorial Methods to Solve Cut-Determined Multi ow Problems, Combinatorial Methods for Flow Problems, no. 3 (A. V. Karzanov, editor), Vsesoyuz. Nauchno-Issled. Inst. Sistem Issled., Moscow, 1979, 6–69 (in Russian).Google Scholar
  15. [15]
    A. V. Karzanov and M. V. Lomonosov: Flow systems in undirected networks, Mathematical Programming, (O. I. Larichev, ed.) Institute for System Studies, Moscow (1978), 59–66 (in Russian).Google Scholar
  16. [16]
    L. Lovász: On some connectivity properties of Eulerian graphs, Acta Mat. Akad. Sci. Hungaricae 28 (1976), 129–138.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    P. A. Pevzner: Non-3-crossing families and multicommodity flows, Amer. Math. Soc. Transl. 158 (1994), 201–206.MathSciNetGoogle Scholar
  18. [18]
    A. Suk: A note on K k,k-cross free families, Electron. J. Combin. 15 (2008), #N39.Google Scholar
  19. [19]
    P. Valtr: On geometric graphs with no k pairwise parallel edges, Discrete Comput. Geom. 19 (1998), 461–469.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations