, Volume 38, Issue 6, pp 1385–1413 | Cite as

On the Linear Span of Lattice Points in a Parallelepiped

  • Marcel CelayaEmail author
Original paper

Mathematics Subject Classification (2000)

52B20 52B05 11M20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Babai: The Fourier transform and equations over finite abelian groups, Lecture Notes, 1989.Google Scholar
  2. [2]
    V. Batyrev and J. Hofscheier: A generalization of a theorem of G. K. White, arXiv:1004.3411 [math], April 2010.Google Scholar
  3. [3]
    V. Batyrev and J. Hofscheier: Lattice polytopes, finite abelian subgroups in SL(n;C) and coding theory, arXiv: 1309.5312 [math], September 2013.Google Scholar
  4. [4]
    M. Beck and S. Robins: Computing the Continuous Discretely: Integer-point Enumeration in Polyhedra, Springer Science & Business Media, November 2007.zbMATHGoogle Scholar
  5. [5]
    W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebő and M. Tarsi: Flows, View Obstructions, and the Lonely Runner, Journal of Combinatorial Theory, Series B 72 (1998), 1–9.zbMATHGoogle Scholar
  6. [6]
    A. Borisov: Quotient singularities, integer ratios of factorials, and the Riemann Hypothesis, International Mathematics Research Notices, 2008:rnn052, 2008.zbMATHGoogle Scholar
  7. [7]
    K. Conrad: Characters of finite abelian groups, Lecture Notes, 2010.Google Scholar
  8. [8]
    A. R. Fletcher: Inverting Reid’s exact plurigenera formula, Mathematische Annalen 284 (1989), 617–629.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. Higashitani, B. Nill and A. Tsuchiya: Gorenstein polytopes with trinomial h*-polynomials, arXiv:1503.05685 [math], March 2015.Google Scholar
  10. [10]
    S. Lang: Cyclotomic Fields I and II, Springer New York, January 1990.CrossRefzbMATHGoogle Scholar
  11. [11]
    H. Montgomery and R. C. Vaughan: Multiplicative number theory I: Classical theory, volume 97, Cambridge University Press, 2006.CrossRefzbMATHGoogle Scholar
  12. [12]
    S. Mori: On 3-dimensional terminal singularities, Nagoya Mathematical Journal 98 (1985), 43–66.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    D. R. Morrison and G. Stevens: Terminal quotient singularities in dimensions three and four, Proceedings of the American Mathematical Society 90 (1984), 15–20.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J. E. Reeve: On the volume of lattice polyhedra, Proceedings of the London Mathematical Society 3 (1957), 378–395.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Reid: Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin (1985), 345–414.Google Scholar
  16. [16]
    B. Reznick: Lattice point simplices, Discrete Mathematics 60 (1986), 219–242.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Sebő: An introduction to empty lattice simplices, in: Integer programming and combinatorial optimization, 400–414. Springer, 1999.CrossRefGoogle Scholar
  18. [18]
    A. Terras: Fourier Analysis on Finite Groups and Applications, Cambridge University Press, March 1999.CrossRefzbMATHGoogle Scholar
  19. [19]
    G. K. White: Lattice tetrahedra, Canad. J. Math 16 (1964), 389–396.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations