, Volume 38, Issue 6, pp 1415–1436 | Cite as

Minimal Normal Graph Covers

  • David GajserEmail author
  • Bojan Mohar
Original paper

Mathematics Subject Classification (2000)

05C35 05C69 05C70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Csiszár and J. Körner: Information theory, Cambridge University Press, second edition, 2011.CrossRefzbMATHGoogle Scholar
  2. [2]
    I. Csiszár, J. Körner, L. Lovász, K. Marton and G. Simonyi: Entropy splitting for antiblocking corners and perfect graphs, Combinatorica 10 (1990), 27–40.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. De Simone and J. Körner: On the odd cycles of normal graphs, Discrete Appl. Math. 94 (1999), 161–169.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    E. Fachini and J. Körner: Cross-intersecting couples of graphs, J. Graph Theory 56 (2007), 105–112.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Harutyunyan, L. Pastor and S. Thomasse: Disproving the normal graph conjecture, 2015, Preprint, arXiv:1508.05487.Google Scholar
  6. [6]
    J. Körner: An extension of the class of perfect graphs, Studia Sci. Math. Hungar. 8 (1973), 405–409.MathSciNetzbMATHGoogle Scholar
  7. [7]
    J. Körner and G. Longo: Two-step encoding for finite sources, IEEE Trans. Inf. Theor. 19 (2006), 778–782.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J. Körner, G. Simonyi and Z. Tuza: Perfect couples of graphs, Combinatorica 12 (1992), 179–192.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    L. Lovász: Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972), 253–267.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    I. E. Zverovich and V. E. Zverovich: Basic perfect graphs and their extensions, Discrete Math. 293 (2005), 291–311.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.FMF, Department of MathematicsUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations