Advertisement

Combinatorica

, Volume 38, Issue 6, pp 1337–1352 | Cite as

Treewidth of Grid Subsets

  • Eli Berger
  • Zdeněk DvořákEmail author
  • Sergey Norin
Original paper
  • 1 Downloads

Mathematics Subject Classification (2000)

05C10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Alon, G. Ding, B. Oporowski and D. Vertigan: Partitioning into graphs with only small components, Journal of Combinatorial Theory, Ser. B 87 (2003), 231–243.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    B. Baker: Approximation algorithms for NP-complete problems on planar graphs, Journal of the ACM (JACM) 41 (1994), 153–180.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. Chekuri and J. Chuzhoy: Polynomial bounds for the grid-minor theorem, in: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC’ 14, New York, NY, USA, 2014, ACM, 60–69.Google Scholar
  4. [4]
    J. Chuzhoy: Excluded grid theorem: Improved and simplified, in: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC’ 15, New York, NY, USA, 2015, ACM, 645–654.CrossRefGoogle Scholar
  5. [5]
    L. Cowen, W. Goddard and C. E. Jesurum: Defective coloring revisited, Journal of Graph Theory 24 (1997), 205–219.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. DeVos, G. Ding, B. Oporowski, D. Sanders, B. Reed, P. Seymour and D. Vertigan: Excluding any graph as a minor allows a low tree-width 2-coloring, J. Comb. Theory, Ser. B 91 (2004), 25–41.MathSciNetzbMATHGoogle Scholar
  7. [7]
    G. Ding, B. Oporowski, D. P. Sanders and D. Vertigan: Surfaces, tree-width, clique-minors, and partitions, Journal of Combinatorial Theory, Ser. B 79 (2000), 221–246.zbMATHGoogle Scholar
  8. [8]
    Z. Dvořák: Sublinear separators, fragility and subexponential expansion, European Journal of Combinatorics 52, Part A (2016), 103–119.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    K. Edwards, D. Y. Kang, J. Kim, S.-i. Oum and P. Seymour: A relative of hadwiger’s conjecture, SIAM J. Discrete Math. 29 (2015), 2385–2388.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D. Eppstein: Diameter and treewidth in minor-closed graph families, Algorithmica 27 (2000), 275–291.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D. Gale: The game of Hex and the Brouwer fixed-point theorem, The American Mathematical Monthly 86 (1979), 818–827.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    C. Liu and S. Oum: Partitioning h-minor free graphs into three subgraphs with no large components, Electronic Notes in Discrete Mathematics 49 (2015), 133–138.CrossRefzbMATHGoogle Scholar
  13. [13]
    J. Matouőek and A. PřívĕtivŶ: Large monochromatic components in two-colored grids, SIAM Journal on Discrete Mathematics 22 (2008), 295–311.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    N. Robertson and P. D. Seymour: Graph Minors. III. Planar tree-width, J. Combin. Theory, Ser. B 36 (1984), 49–64.MathSciNetzbMATHGoogle Scholar
  15. [15]
    N. Robertson and P. D. Seymour: Graph Minors. V. Excluding a planar graph, J. Combin. Theory, Ser. B 41 (1986), 92–114.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    N. Robertson, P. D. Seymour and R. Thomas: Quickly excluding a planar graph, J. Combin. Theory, Ser. B 62 (1994), 323–348.MathSciNetzbMATHGoogle Scholar
  17. [17]
    P. D. Seymour and R. Thomas: Graph searching and a min-max theorem for treewidth, Journal of Combinatorial Theory, Ser. B 58 (1993), 22–33.zbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of HaifaHaifaIsrael
  2. 2.Charles UniversityPragueCzech Republic
  3. 3.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada

Personalised recommendations