Advertisement

Topology of complexes of edge covering partite graphs and hypergraphs

  • Victor A. Vassiliev
Article
  • 28 Downloads

Abstract

We describe the homotopy types of complexes of partite graphs and hypergraphs with a fixed set of vertices covered by their edges.

Mathematics Subject Classification (2000)

05C10 05C65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Babson, A. Björner, S. Linusson, E. Shareshian and V. Welker: The complexes of not i-connected graphs, Topology 38 (1999), 271–299.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Björner and V. Welker: The homology of "k-equal" manifolds and related partition lattices, Advances in Math. 110 (1995), 277–313.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. Blackburn, K. Lund, S. Schlicker, P. Sigmon and A. Zupan: A missing prime configuration in the Hausdorff metric geometry, J. Geom 92 (2009), 28–59.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J. Jonsson: Simplicial Complexes of Graphs, Springer, Lecture Notes in Mathematics, Berlin–Heidelberg, 2008.CrossRefzbMATHGoogle Scholar
  5. [5]
    J. Folkman: The homology group of a lattice, J. Math. Mech. 15 (1966), 631–636.MathSciNetzbMATHGoogle Scholar
  6. [6]
    A. Hatcher: Algebraic Topology, Cambridge Univ. Press, 2002.zbMATHGoogle Scholar
  7. [7]
    K. Honigs: Missing edge coverings of bipartite graphs and the geometry of the Hausdorff metric, J. Geom 104 (2013), 107–125.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D. Kozlov: Combinatorial algebraic topology, Algorithms and Computation in Mathematics, 21. Springer, Berlin, 2008.CrossRefzbMATHGoogle Scholar
  9. [9]
    V. Turchin: Homology of complexes of two-connected graphs, Russian Math. Surveys, 52 (1997), 426–427.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    V. A. Vassiliev: Complexes of connected graphs, The Gelfand mathematical seminars 1990–1992 (L. Corvin, I. Gelfand, and J. Lepovsky, eds), Birkhäuser, Boston, 1993, 223–235.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesNational Research University Higher School of EconomicsMoscowRussia

Personalised recommendations