, Volume 38, Issue 6, pp 1309–1335 | Cite as

Extending Factorizations of Complete Uniform Hypergraphs

  • M. Amin BahmanianEmail author
  • Mike Newman
Original paper

Mathematics Subject Classification (2000)

05C70 05C65 05C15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. D. Andersen and A. J. W. Hilton: Generalized Latin rectangles, II, Embedding, Discrete Math. 31 (1980), 235–260.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Bahmanian and M. Newman: Embedding factorizations for 3-uniform hypergraphs II: r-factorizations into s-factorizations, Electron. J. Combin. 23 (2016), paper 2.42, 14.Google Scholar
  3. [3]
    A. Bahmanian and C. Rodger: Embedding factorizations for 3-uniform hypergraphs, J. Graph Theory 73 (2013), 216–224.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. A. Bahmanian: Detachments of hypergraphs I: The Berge-Johnson problem, Combin. Probab. Comput. 21 (2012), 483–495.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Zs. Baranyai: On the factorization of the complete uniform hypergraph, in: Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdńs on his 60th birthday), Vol. I, 91–108. Colloq. Math. Soc. János Bolyai, Vol. 10. North-Holland, Amsterdam, 1975.Google Scholar
  6. [6]
    Zs. Baranyai and A. E. Brouwer: Extension Of Colourings Of The Edges Of A Complete (uniform Hyper)graph, CWI Technical Report ZW 91/77, 1977.zbMATHGoogle Scholar
  7. [7]
    P. J. Cameron: Parallelisms of complete designs, Cambridge University Press, Cambridge-New York-Melbourne, 1976. London Mathematical Society Lecture Note Series, No. 23.CrossRefzbMATHGoogle Scholar
  8. [8]
    R. Häggkvist and T. Hellgren: Extensions of edge-colourings in hypergraphs, I, in: Combinatorics, Paul Erdős is eighty, Vol. 1, Bolyai Soc. Math. Stud., 215–238. János Bolyai Math. Soc., Budapest, 1993.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of OttawaOttawaCanada
  2. 2.Department of Mathematics and StatisticsIllinois State UniversityNormalUSA

Personalised recommendations