, Volume 38, Issue 5, pp 1095–1100 | Cite as

The Additive Structure of Cartesian Products Spanning Few Distinct Distances

  • Brandon HansonEmail author
Original Paper


Guth and Katz proved that any point set P in the plane determines Ω(|P|/log |P|) distinct distances. We show that when near to this lower bound, a point set P of the form A × A must satisfy |A-A|≪|A-A|2-1/8.

Mathematics Subject Classification (2000)

11P70 52C10 05D99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Cilleruelo and A. Granville: Lattice points on circles, squares in arithmetic progressions and sumsets of squares, Additive combinatorics, 241–262, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007.CrossRefGoogle Scholar
  2. [2]
    G. Elekes, M. B. Nathanson and I. Ruzsa: Convexity and sumsets, J. Number Theory 83 (2000), 194–201.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P. Erdős: On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P. Erdős: On some metric and combinatorial geometric problems, Discrete Math. 60 (1986), 147–153.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    L. Guth and N. H. Katz: On the Erdős distinct distances problem in the plane, Ann. of Math. 181 (2015), 155–190.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    L. Li and O. Roche-Newton: Convexity and a sum-product type estimate, Acta Arith. 156 (2012), 247–255.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    G. Petridis: New proofs of Plünnecke-type estimates for product sets in groups, Combinatorica 32 (2012), 721–733.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Sheffer, J. Zahl and F. de Zeeuw: Few distinct distances implies no heavy lines or circles, arXiv:1308.5620.Google Scholar
  9. [9]
    I. D. Shkredov: Difference sets are not multiplicatively closed, arXiv:1602.02360.Google Scholar
  10. [10]
    J. Solymosi: Bounding multiplicative energy by the sumset, Adv. Math. 222 (2009), 402–408.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P. Ungar: 2N noncollinear points determine at least 2N directions, J. Combinatorial Theory, Ser. A 33 (1982), 343–347.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations