, Volume 37, Issue 6, pp 1181–1205 | Cite as

Proof of Schur’s Conjecture in ℝ D

  • Andrey B. Kupavskii
  • Alexandr Polyanskii
Original Paper


In this paper we prove Schur’s conjecture in ℝ d , which states that any diameter graph G in the Euclidean space ℝ d on n vertices may have at most n cliques of size d. We obtain an analogous statement for diameter graphs with unit edge length on a sphere S r d of radius \(r>1/\sqrt{2}\). The proof rests on the following statement, conjectured by F. Morić and J. Pach: given two unit regular simplices Δ1, Δ2 on d vertices in ℝ d , either they share d-2 vertices, or there are vertices v1Δ1, v2Δ2 such that ‖v1-v2‖>1. The same holds for unit simplices on a d-dimensional sphere of radius greater than \(1/\sqrt{2}\).

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. V. Akopyan and A. S. Tarasov: A Constructive Proof of Kirszbraun’s Theorem, Mathematical Notes 84 (2008), 725–728.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    D. V. Alekseevskij, E. B. Vinberg and A. S. Solodovnikov: Geometry of spaces of constant curvature Geometry II: Spaces of constant curvature, Encycl. Math. Sci. 29 (1993), 1–138. Translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 29 (1988), 5–146.CrossRefzbMATHGoogle Scholar
  3. [3]
    P. Brass, W. Moser and J. Pach: Research problems in discrete geometry, Springer, Berlin, 2005.zbMATHGoogle Scholar
  4. [4]
    V. V. Bulankina, A. B. Kupavskii and A. A. Polyanskii: Note on Schur’s conjecture in R4, Doklady Mathematics 89 (2014), 88–91.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    V. V. Bulankina, A. B. Kupavskii and A. A. Polyanskiy: On Schur’s conjecture in R4, Mathematical notes 97 (2015), 21–29.CrossRefzbMATHGoogle Scholar
  6. [6]
    V. L. Dol’nikov: Some properties of graphs of diameters, Discrete Comput. Geom. 24 (2000), 293–299.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    P. Erdős: On a set of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P. Erdős: On sets of distances of n points in Euclidean space, Magyar Tud. Akad. Mat. Kut. Int. Közl. 5 (1960), 165–169.MathSciNetzbMATHGoogle Scholar
  9. [9]
    H. Hopf and E. Pannwitz: Aufgabe Nr. 167, Jahresbericht Deutsch. Math.-Verein. 43 (1934), 114.zbMATHGoogle Scholar
  10. [10]
    B. Grünbaum: A proof of Vázsonyi’s conjecture, Bull. Res. Council Israel, Sect. A 6 (1956), 77–78.MathSciNetzbMATHGoogle Scholar
  11. [11]
    A. Heppes: Beweis einer Vermutung von A. Vázsonyi, Acta Math. Acad. Sci. Hungar. 7 (1957), 463–466.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Kupavskii: Diameter graphs in R4, Discrete and Computational Geometry 51 (2014), 842–858.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Kupavskii and A. Polyanskii: On simplices in diameter graphs in R4, Mathematical Notes, accepted.Google Scholar
  14. [14]
    L. Fejes Tóth: Lagerungen in der Ebene, auf der Kugel und im Raum, Springer-Verlag, 1972.CrossRefzbMATHGoogle Scholar
  15. [15]
    H. Maehara: Dispersed points and geometric embedding of complete bipartite graphs, Discrete and Computational Geometry 6 (1991), 57–67.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    F. Morić and J. Pach: Remarks on Schur’s conjecture, Comput. Geom. 48 (2015), 520–527.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    F. Morić and J. Pach: Large simplices determined by finite point sets, Beitr. Algebra Geom. 54 (2013), 45–57.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. M. Raigorodskii: Around Borsuk’s conjecture, J. of Math. Sci. 154 (2008), 604–623.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Z. Schur, M. A. Perles, H. Martini and Y. S. Kupitz: On the number of maximal regular simplices determined by n points in Rd, in: Discrete and Computational Geometry, The Goodman-Pollack Festschrift, B. Aronov, S. Basu, J. Pach, M. Sharir eds., Springer, 2003.Google Scholar
  20. [20]
    S. Straszewicz: Sur un problème géométrique de P. Erdős, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 39–40.MathSciNetzbMATHGoogle Scholar
  21. [21]
    K. J. Swanepoel: Unit distances and diameters in Euclidean spaces, Discrete and Computational Geometry 41 (2009), 1–27.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Ecole Polytechnique Fédérale de LausanneMoscow Institute of Physics and TechnologyMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyTechnion - Israel Institute of TechnologyMoscowRussia

Personalised recommendations