, Volume 37, Issue 2, pp 253–268 | Cite as

The complexity of proving that a graph is Ramsey

  • Massimo Lauria
  • Pavel PudlákEmail author
  • Vojtěch Rödl
  • Neil Thapen
Original Paper


We say that a graph with n vertices is c-Ramsey if it does not contain either a clique or an independent set of size c log n. We define a CNF formula which expresses this property for a graph G. We show a superpolynomial lower bound on the length of resolution proofs that G is c-Ramsey, for every graph G. Our proof makes use of the fact that every c-Ramsey graph must contain a large subgraph with some properties typical for random graphs.

Mathematics Subject Classification (2000)

03F20 05C55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Alekhnovich, E. Ben-Sasson, A. A. Razborov and A. Wigderson: Pseudorandom generators in propositional proof complexity, SIAM Journal on Computing, 34 (2004), 67–88, a preliminary version appeared in FOCS ’00.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Atserias and V. Dalmau: A combinatorial characterization of resolution width, J. Comput. Syst. Sci., 74 (2008), 323–334.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Atserias, J. K. Fichte and M. Thurley: Clause-learning algorithms with many restarts and bounded-width resolution, J. Artif. Intell. Res. (JAIR), 40 (2011), 353–373.MathSciNetzbMATHGoogle Scholar
  4. [4]
    E. Ben-Sasson and A. Wigderson: Short proofs are narrow - resolution made simple, in: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, 517–526, 1999.Google Scholar
  5. [5]
    O. Beyersdorff, N. Galesi and M. Lauria: Parameterized complexity of DPLL search procedures, ACM Transactions on Computational Logic, 14 (2013), 1–21.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    O. Beyersdorff, N. Galesi, M. Lauria and A. A. Razborov: Parameterized bounded-depth Frege is not optimal, ACM Trans. Comput. Theory, 4 (2012), 1–16.CrossRefzbMATHGoogle Scholar
  7. [7]
    L. Carlucci, N. Galesi and M. Lauria: Paris-Harrington tautologies, in: Proc. of IEEE 26th Conference on Computational Complexity, 93–103, 2011.Google Scholar
  8. [8]
    F. R. K. Chung, P. Erdős and R. L. Graham: Erdős on Graphs: His Legacy of Unsolved Problems, AK Peters, Ltd., 1 edition, 1998.Google Scholar
  9. [9]
    S. Dantchev, B. Martin and S. Szeider: Parameterized proof complexity, Computational Complexity, 20 (2011), 51–85.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    P. Erdős: Some remarks on the theory of graphs, Bull. Amer. Math. Soc, 53 (1947), 292–294.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J. Krajíček: Tautologies from pseudo-random generators, Bulletin of Symbolic Logic, 197–212, 2001.Google Scholar
  12. [12]
    J. Krajíček: Lower bounds to the size of constant-depth propositional proofs, Journal of Symbolic Logic, 59 (1994), 73–86.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. Krajíček: A note on propositional proof complexity of some Ramsey-type statements, Archive for Mathematical Logic, 50 (2011), 245–255.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    B. Krishnamurthy and R. N. Moll: Examples of hard tautologies in the propositional calculus, in: STOC 1981, 13th ACM Symposium on Th. of Computing, 28–37, 1981.Google Scholar
  15. [15]
    K. Pipatsrisawat and A. Darwiche: On the power of clause-learning SAT solvers as resolution engines, Articial Intelligence, 175 (2011), 512–525.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    H. Prömel and V. Rödl: Non-Ramsey graphs are c log n-universal, Journal of Combinatorial Theory, Series A, 88 (1999), 379–384.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    P. Pudlák: Ramsey’s theorem in Bounded Arithmetic, in: Proceedings of Computer Science Logic 1990, 308–317, 1991.Google Scholar
  18. [18]
    P. Pudlák: A lower bound on the size of resolution proofs of the Ramsey theorem, Inf. Process. Lett., 112 (2012), 610–611.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Massimo Lauria
    • 1
  • Pavel Pudlák
    • 2
    Email author
  • Vojtěch Rödl
    • 3
  • Neil Thapen
    • 2
  1. 1.KTH Royal Institute of TechnologyStockholmSweden
  2. 2.Czech Academy of SciencesPragueCzech Republic
  3. 3.Emory UniversityAtlantaUSA

Personalised recommendations