, Volume 36, Issue 3, pp 333–347 | Cite as

Distinguishing graphs with intermediate growth

  • Florian LehnerEmail author
Original Paper


A graph G is said to be 2-distinguishable if there is a 2-labeling of its vertices which is not preserved by any nontrivial automorphism of G. We show that every locally finte graph with infinite nite motion and growth at most \(\mathcal{O}\left( {2^{(1 - \varepsilon )\tfrac{{\sqrt n }} {2}} } \right)\) is 2-distinguishable. Infinite motion means that every automorphism moves infinitely many vertices and growth refers to the cardinality of balls of radius n.

Mathematics Subject Classification

05C25 05C15 20B27 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. O. Albertson and K. L. Collins: Symmetry breaking in graphs, Electron. J. Combin. 3, Research Paper 18, 1996.MathSciNetzbMATHGoogle Scholar
  2. [2]
    M. Conder and T. Tucker: Motion and distinguishing number two, Ars Math. Contemp. 4 (2011), 63–72.MathSciNetzbMATHGoogle Scholar
  3. [3]
    J. Cuno, W. Imrich and F. Lehner: Distinguishing graphs with infinite motion and nonlinear growth. Ars Math. Contemp. 7 (2014), 201–213.MathSciNetzbMATHGoogle Scholar
  4. [4]
    R. Diestel: Graph theory, volume 173 of Graduate Texts in Mathematics, Springer- Verlag, Berlin, third edition, 2005.Google Scholar
  5. [5]
    M. J. Fisher and G. Isaak: Distinguishing numbers of Cartesian products of mul-tiple complete graphs, Ars Math. Contemp. 5 (2012), 159–173.MathSciNetzbMATHGoogle Scholar
  6. [6]
    W. Imrich, J. Jerebic and S. Klavžar: The distinguishing number of Cartesian products of complete graphs, European J. Combin. 29 (2008), 922–929.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    W. Imrich, R. Kalinowski, F. Lehner and M. Pilśniak: Endomorphism breaking in graphs, Electron. J. Comb. 21, Research Paper P1.16, 2014.MathSciNetzbMATHGoogle Scholar
  8. [8]
    W. Imrich and S. Klavžar: Distinguishing Cartesian powers of graphs, J. Graph Theory 53 (2006), 250–260.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    W. Imrich, S. Klavžar and V. Trofimov: Distinguishing infinite graphs, J. Algebr. Comb. 41 (2015), 109–122.CrossRefzbMATHGoogle Scholar
  10. [10]
    W. Imrich, S. M. Smith, T. Tucker and M. E. Watkins: Infinite motion and 2-distinguishability of groups and graphs, preprint.Google Scholar
  11. [11]
    S. Klavžear, T.-L. Wong and X. Zhu: Distinguishing labellings of group action on vector spaces and graphs, J. Algebra 303 (2006), 626–641.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Klavžear and X. Zhu: Cartesian powers of graphs can be distinguished by two labels, European J. Combin. 28 (2007), 303–310.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    C. Laflamme, L. Nguyen Van ThÉ and N. Sauer: Distinguishing number of count-able homogeneous relational structures, Electron. J. Combin. 17 Research Paper 20, 2010.MathSciNetzbMATHGoogle Scholar
  14. [14]
    F. Lehner: Random colorings and automorphism breaking in locally fintfinite graphs, Combinatorics, Probability and Computing 22 (2013), 885–909.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Russell and R. Sundaram: A note on the asymptotics and computational complexity of graph distinguish ability, Electron. J. Combin. 5, Research Paper 23, 1998.MathSciNetzbMATHGoogle Scholar
  16. [16]
    S. M. Smith, T. W. Tucker and M. E. Watkins: Distinguishability of infinite groups and graphs, Electron. J. Combin. 19, Research Paper 27, 2012.MathSciNetzbMATHGoogle Scholar
  17. [17]
    T. W. Tucker: Distinguishing maps, Electron. J. Combin. 18 Paper 50, 2011.MathSciNetzbMATHGoogle Scholar
  18. [18]
    M. E. Watkins and X. Zhou: Distinguishability of locally finite trees, Electron. J. Combin. 14, Research Paper 29, 2007.MathSciNetzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversität HamburgHamburgGermany

Personalised recommendations