, Volume 34, Issue 3, pp 255–277 | Cite as

Steiner transitive-closure spanners of low-dimensional posets

  • Piotr Berman
  • Arnab Bhattacharyya
  • Elena Grigorescu
  • Sofya Raskhodnikova
  • David P. Woodruff
  • Grigory Yaroslavtsev


Given a directed graph G=(V, E) and an integer k ≥ 1, a k-transitive-closure spanner (k-TC-spanner) of G is a directed graph H=(V, E H ) that has (1) the same transitive closure as G and (2) diameter at most k. In some applications, the shortcut paths added to the graph in order to obtain small diameter can use Steiner vertices, that is, vertices not in the original graph G. The resulting spanner is called a Steiner transitive-closure spanner (Steiner TC-spanner).

Motivated by applications to property reconstruction and access control hierarchies, we concentrate on Steiner TC-spanners of directed acyclic graphs or, equivalently, partially ordered sets. In these applications, the goal is to find a sparsest Steiner k-TC-spanner of a poset G for a given k and G. The focus of this paper is the relationship between the dimension of a poset and the size of its sparsest Steiner TC-spanner. The dimension of a poset G is the smallest d such that G can be embedded into a d-dimensional directed hypergrid via an order-preserving embedding.

We present a nearly tight lower bound on the size of Steiner 2-TC-spanners of d- dimensional directed hypergrids. It implies better lower bounds on the complexity of local reconstructors of monotone functions and functions with small Lipschitz constant. The lower bound is derived from an explicit dual solution to a linear programming relaxation of the Steiner 2-TC-spanner problem. We also give an efficient construction of Steiner 2-TC-spanners, of size matching the lower bound, for all low-dimensional posets. Finally, we present a lower bound on the size of Steiner k-TC-spanners of d-dimensional posets. It shows that the best-known construction, due to De Santis et al., cannot be improved significantly.

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Ackermann: Zum hilbertschen Aufbau der reellen Zahlen, Math. Ann. 999 (1928), 118–133.CrossRefMathSciNetGoogle Scholar
  2. [2]
    N. Ailon, B. Chazelle, S. Comandur and D. Liu: Property-preserving data reconstruction, Algorithmica 951 (2008), 160–182.CrossRefMathSciNetGoogle Scholar
  3. [3]
    N. Alon and B. Schieber: Optimal preprocessing for answering on-line product queries, Technical Report 71/87, Tel-Aviv University, 1987.Google Scholar
  4. [4]
    M. J. Atallah, M. Blanton, N. Fazio and K. B. Frikken: Dynamic and efficient key management for access hierarchies, ACM Trans. Inf. Syst. Secur. 912 2009.Google Scholar
  5. [5]
    M. J. Atallah, K. B. Frikken and M. Blanton: Dynamic and efficient key management for access hierarchies, in V. Atluri, C. Meadows, and A. Juels, editors, ACM Conference on Computer and Communications Security, 190–202, ACM, 2005.Google Scholar
  6. [6]
    B. Awerbuch: Communication-time trade-offs in network synchronization, in: PODC, 272–276, 1985.Google Scholar
  7. [7]
    P. Berman, A. Bhattacharyya, E. Grigorescu, S. Raskhodnikova, D. P. Woodruff and G. Yaroslavtsev: Steiner transitive-closure spanners of low-dimensional posets, in: L. Aceto, M. Henzinger, and J. Sgall, editors, ICALP (1), volume 6755 of Lecture Notes in Computer Science, 760–772, Springer, 2011.Google Scholar
  8. [8]
    A. Bhattacharyya, E. Grigorescu, M. Jha, K. Jung, S. Raskhodnikova and D. P. Woodruff: Lower bounds for local monotonicity reconstruction from transitive-closure spanners, SIAM J. Discrete Math. 926 (2012), 618–646.CrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Bhattacharyya, E. Grigorescu, K. Jung, S. Raskhodnikova and D. P. Woodruff: Transitive-closure spanners, SIAM J. Comput. 941 (2012), 1380–1425.CrossRefMathSciNetGoogle Scholar
  10. [10]
    H. L. Bodlaender, G. Tel and N. Santoro: Trade-offs in non-reversing diameter, Nordic J. of Computing 91 (1994) 111–134.MathSciNetGoogle Scholar
  11. [11]
    A. K. Chandra, S. Fortune and R. J. Lipton: Lower bounds for constant depth circuits for prefix problems, in: J. Díaz, editor, ICALP, volume 154 of LNCS, 109–117, Springer, 1983.Google Scholar
  12. [12]
    A. K. Chandra, S. Fortune and R. J. Lipton: Unbounded fan-in circuits and associative functions, J. Comput. Syst. Sci. 930 (1985), 222–234.CrossRefMathSciNetGoogle Scholar
  13. [13]
    B. Chazelle: Computing on a free tree via complexity-preserving mappings, Algorithmica 92 (1987), 337–361.CrossRefMathSciNetGoogle Scholar
  14. [14]
    A. De Santis, A. L. Ferrara and B. Masucci: New constructions for provably-secure time-bound hierarchical key assignment schemes, Theor. Comput. Sci. 9407 (2008), 213–230.CrossRefGoogle Scholar
  15. [15]
    Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron and A. Samorodnitsky: Improved testing algorithms for monotonicity, in: RANDOM, 97–108, 1999.Google Scholar
  16. [16]
    B. Dushnik and E. Miller: Concerning similarity transformations of linearly ordered sets, Bulletin Amer. Math. Soc. 946 (1940), 322–326.CrossRefMathSciNetGoogle Scholar
  17. [17]
    B. Dushnik and E. W. Miller: Partially ordered sets, Amer. J. Math. 963 (1941), 600–610.CrossRefMathSciNetGoogle Scholar
  18. [18]
    Z. Füredi and J. Kahn: On the dimension of ordered sets of bounded degree, Order 93 (1986), 15–20.CrossRefGoogle Scholar
  19. [19]
    W. Hesse: Directed graphs requiring large numbers of shortcuts, in: SODA, 665–669, ACM/SIAM, 2003.Google Scholar
  20. [20]
    T. Hiraguchi: On the dimension of partially ordered sets, Science Reports Kanazawa University 91 (1951), 77–94.MathSciNetGoogle Scholar
  21. [21]
    M. Jha and S. Raskhodnikova: Testing and reconstruction of Lipschitz functions with applications to data privacy, in: R. Ostrovsky, editor, FOCS, 433–442, IEEE, 2011.Google Scholar
  22. [22]
    D. Kelly: On the dimension of partially ordered sets, Discrete Mathematics 935 (1981), 135–156.CrossRefGoogle Scholar
  23. [23]
    D. Peleg and A. A. Schäaffer: Graph spanners, J. Graph Theory 913 (1989), 99–116.CrossRefMathSciNetGoogle Scholar
  24. [24]
    S. Raskhodnikova: Transitive-closure spanners: A survey, in: O. Goldreich, editor, Property Testing, volume 6390 of LNCS, 167–196, Springer, 2010.Google Scholar
  25. [25]
    M. E. Saks and C. Seshadhri: Local monotonicity reconstruction, SIAM J. Comput. 939 (2010), 2897–2926.CrossRefMathSciNetGoogle Scholar
  26. [26]
    M. Thorup: On shortcutting digraphs, in: E. W. Mayr, editor, WG, volume 657 of LNCS, 205–211, Springer, 1992.Google Scholar
  27. [27]
    M. Thorup: Shortcutting planar digraphs, Combinatorics, Probability & Computing 94 (1995), 287–315.CrossRefMathSciNetGoogle Scholar
  28. [28]
    M. Thorup: Parallel shortcutting of rooted trees, J. Algorithms 923 (1997), 139–159.CrossRefMathSciNetGoogle Scholar
  29. [29]
    W. T. Trotter and J. Moore: The dimension of planar posets, Journal of Combinatorial Theory, Series B 922 (1977), 54–67.CrossRefMathSciNetGoogle Scholar
  30. [30]
    M. Yannakakis: The complexity of the partial order dimension problem, SIAM Journal on Matrix Analysis and Applications 93 (1982), 351–358.MathSciNetGoogle Scholar
  31. [31]
    A. C.-C. Yao: Space-time tradeoff for answering range queries (extended abstract), in: H. R. Lewis, B. B. Simons, W. A. Burkhard, and L. H. Landweber, editors, STOC, 128–136, ACM, 1982.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Piotr Berman
    • 1
  • Arnab Bhattacharyya
    • 2
  • Elena Grigorescu
    • 4
  • Sofya Raskhodnikova
    • 1
  • David P. Woodruff
    • 3
  • Grigory Yaroslavtsev
    • 1
  1. 1.Pennsylvania State UniversityUniversity ParkUSA
  2. 2.DIMACS and Rutgers UniversityNewarkUSA
  3. 3.IBM Almaden Research CenterSan JoseUSA
  4. 4.Purdue UniversityWest LafayetteUSA

Personalised recommendations