, Volume 32, Issue 1, pp 85–110 | Cite as

Acute triangulations of polyhedra and ℝN

Original Paper


We study the problem of acute triangulations of convex polyhedra and the space ℝn. Here an acute triangulation is a triangulation into simplices whose dihedral angles are acute. We prove that acute triangulations of the n-cube do not exist for n≥4. Further, we prove that acute triangulations of the space ℝn do not exist for n≥5. In the opposite direction, in ℝ3, we present a construction of an acute triangulation of the cube, the regular octahedron and a non-trivial acute triangulation of the regular tetrahedron. We also prove nonexistence of an acute triangulation of ℝ4 if all dihedral angles are bounded away from π/2.

Mathematics Subject Classification (2000)

52B05 52C17 51M20 52B10 52C22 


  1. [1]
    A. V. Akopyan: PL-analogue of the Nash-Kuiper theorem (in Russian), preprint (2007).Google Scholar
  2. [2]
    A. D. Alexandrov: On partitions and tessellations of the plane (in Russian), Mat. Sbornik 2 (1937), 307–318.Google Scholar
  3. [3]
    B. S. Baker, E. Grosse and C. S. Rafferty: Nonobtuse triangulations of polygons, Discrete Comput. Geom. 3 (1988), 147–168.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    I. Benjamini and N. Curien: Local limit of packable graphs, arXiv:0907.2609.Google Scholar
  5. [5]
    I. Benjamini and O. Schramm: Lack of Sphere Packings of Graphs via Non-Linear Potential Theory, in preparation.Google Scholar
  6. [6]
    M. Bern and D. Eppstein: Polynomial-size nonobtuse triangulation of polygons. Int. J. Comp. Geometry and Applications 2 (1992), 241–255.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    M. Bern, S. Mitchell and J. Ruppert: Linear-size nonobtuse triangulations of polygons, Discrete Comput. Geom. 14 (1995), 411–428.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    M. Bonk and B. Kleiner: Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), 127–183.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    J. Brandts, S. Korotov, M. Křžek and J. Šolc: On Nonobtuse Simplicial Partitions, SIAM Rev. 51 (2009), 317–335.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Ju. D. Burago and V. A. Zalgaller: Polyhedral embedding of a net (in Russian), Vestnik Leningrad. Univ. 15 (1960), no. 7, 66–80.MathSciNetMATHGoogle Scholar
  11. [11]
    C. Cassidy and G. Lord: A square acutely triangulated, J. Rec. Math. 13 (1980), 263–268.MathSciNetGoogle Scholar
  12. [12]
    H. S. M. Coxeter: Regular polytopes (Third edition), Dover, New York, 1973.Google Scholar
  13. [13]
    J. A. De Loera, J. Rambau and F. Santos: Triangulations: Structures and Algorithms, Springer, 2008.Google Scholar
  14. [14]
    D. Eppstein: Acute square triangulation, 1997; available at
  15. [15]
    D. Eppstein, J. M. Sullivan and A. Üngör: Tiling space and slabs with acute tetrahedra, Comput. Geom. 27 (2004), 237–255; arXiv:cs.CG/0302027.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    C. Fulton: Tessellations, Amer. Math. Monthly 99 (1992), 442–445.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    B. Grünbaum, P. Mani-Levitska and G. C. Shephard: Tiling three-dimensional space with polyhedral tiles of a given isomorphism type, J. London Math. Soc. 29 (1984), 181–191.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    B. Grünbaum and G. C. Shephard: Tilings and patterns, Freeman, New York, 1987.MATHGoogle Scholar
  19. [19]
    T. Januszkiewicz and J. Świątkowski: Hyperbolic Coxeter groups of large dimension, Comment. Math. Helv. 78 (2003), 555–583.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    D. A. Klain: Dehn-Sommerville relations for triangulated manifolds, unpublished note; available at
  21. [21]
    V. Klee: A combinatorial analogue of Poincaré’s duality theorem, Canad. J. Math. 16 (1964), 517–531.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    M. Křžek: There is no face-to-face partition of R 5 into acute simplices, Discrete Comput. Geom. 36 (2006), 381–390; a correction will appear in Proc. ENUMATH 2009 Conf., Uppsala, Springer, Berlin, 2010.MathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Kuperberg and O. Schramm: Average kissing numbers for noncongruent sphere packings, Math. Res. Lett. 1 (1994), 339–344.MathSciNetMATHGoogle Scholar
  24. [24]
    J. C. Lagarias and D. Moews: Polytopes that fill ℝn and scissors congruence, Discrete Comput. Geom. 13 (1995), 573–583.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    H. Lindgren: Geometric dissections, Van Nostrand, Princeton, N.J., 1964.Google Scholar
  26. [26]
    I. G. Macdonald: Polynomials associated with finite cell-complexes. J. London Math. Soc. 4 (1971), 181–192.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    H. Maehara: Acute triangulations of polygons, Europ. J. Combin. 23 (2002), 45–55.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    W. Manheimer: Solution to problem E1406: Dissecting an obtuse triangle into acute triangles, Amer. Math. Monthly 67 (1960).Google Scholar
  29. [29]
    I. Niven: Convex polygons that cannot tile the plane, Amer. Math. Monthly 85 (1978), 785–792.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    I. Novik and E. Swartz: Applications of Klee’s Dehn-Sommerville relations, Discrete Comput. Geom. 42 (2009), 261–276.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    I. Pak: Lectures on Discrete and Polyhedral Geometry, monograph to appear, available at
  32. [32]
    P. Przytycki and J. Świątkowski: Flag-no-square triangulations and Gromov boundaries in dimension 3, Groups, Geometry & Dynamics 3 (2009), 453–468.MATHCrossRefGoogle Scholar
  33. [33]
    S. Saraf: Acute and nonobtuse triangulations of polyhedral surfaces, Europ. J. Combin. 30 (2009), 833–840.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    J. R. Shewchuk: What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures, preprint, 2002; available at
  35. [35]
    E. Schulte: Tiling three-space by combinatorially equivalent convex polytopes, Proc. London Math. Soc. 49 (1984), 128–140.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    R. P. Stanley: Flag f-vectors and the cd-index, Math. Z. 216 (1994), 483–499.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    G. Strang and G. J. Fix: An analysis of the finite element method, Prentice-Hall, Englewood Cliffs, N.J., 1973.MATHGoogle Scholar
  38. [38]
    E. VanderZee, A. N. Hirani, D. Guoy and E. Ramos: Well-centered triangulation, to appear in SIAM J. Sci. Computing, available at
  39. [39]
    E. VanderZee, A. N. Hirani, V. Zharnitsky and D. Guoy: A dihedral acute triangulation of the cube, to appear in Comput. Geom., arXiv:0905.3715.Google Scholar
  40. [40]
    L. Yuan: Acute triangulations of polygons, Discrete Comput. Geom. 34 (2005), 697–706.MathSciNetMATHCrossRefGoogle Scholar
  41. [41]
    T. Zamfirescu: Acute triangulations: a short survey, in Proc. Sixth Conf. of R.S.M.S., Bucharest, Romania, 2003, 10–18.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer Verlag 2012

Authors and Affiliations

  1. 1.Institute of InformaticsWarsaw UniversityWarsawPoland
  2. 2.Department of MathematicsUCLALos AngelesUSA
  3. 3.Institute of MathematicsPolish Academy of SciencesWarsawPoland

Personalised recommendations