, Volume 34, Issue 6, pp 657–688 | Cite as

A nullstellensatz for sequences over \(\mathbb{F}_p \)

  • Éric Balandraud
  • Benjamin Girard


Let p be a prime and let A = (a 1,...,a ) be a sequence of nonzero elements in \(\mathbb{F}_p \). In this paper, we study the set of all 0–1 solutions to the equation \(a_1 x_1 + \cdots + a_\ell x_\ell = 0\) We prove that whenever p, this set actually characterizes A up to a nonzero multiplicative constant, which is no longer true for <p. The critical case =p is of particular interest. In this context, we prove that whenever =p and A is nonconstant, the above equation has at least p−1 minimal 0–1 solutions, thus refining a theorem of Olson. The subcritical case =p−1 is studied in detail also. Our approach is algebraic in nature and relies on the Combinatorial Nullstellensatz as well as on a Vosper type theorem.

Mathematics Subject Classification (2010)

11D04 11T06 11D45 11P70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Alon: Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999), 7–29.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    E. Balandraud: An addition theorem and maximal zero-sum free sets in ℤ/pℤ, Israel J. Math. 188 (2012), 405–429.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    A.-L. Cauchy: Recherches sur les nombres, J. Ecole Polytech. 9 (1813), 99–116.Google Scholar
  4. [4]
    H. Davenport: On the addition of residue classes, J. Lond. Math. Soc. 10 (1935), 30–32.Google Scholar
  5. [5]
    H. Davenport: A historical note, J. Lond. Math. Soc. 22 (1947), 100–101.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    P. Erdös, A. Ginzburg and A. Ziv: Theorem in the additive number theory, Bull. Research Council Israel 10 (1961), 41–43.Google Scholar
  7. [7]
    A. Geroldinger: Additive group theory and non-unique factorizations, in A. Geroldinger and I. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics, CRM Barcelona Birkh auser (2009), 1–86.CrossRefGoogle Scholar
  8. [8]
    A. Geroldinger and F. Halter-Koch: Non-unique factorizations. Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics 278, Chapman & Hall/CRC (2006).Google Scholar
  9. [9]
    J. E. Olson: A problem of Erdos on abelian groups, Combinatorica 7 (1987), 285–289.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    T. Tao and V. H. Vu: Additive Combinatorics, Cambridge Studies in Advanced Mathematics 105 (2006), Cambridge Press University.Google Scholar
  11. [11]
    G. Vosper: The critical pairs of subsets of a group of prime order, J. Lond. Math. Soc. 31 (1956), 200–205.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    G. Vosper: Addendum to “The critical pairs of subsets of a group of prime order”, J. Lond. Math. Soc. 31 (1956), 280–282CrossRefMathSciNetGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.IMJ, Équipe Combinatoire et OptimisationUniversité Pierre et Marie Curie (Paris 6)ParisFrance

Personalised recommendations