, Volume 31, Issue 4, pp 489–506 | Cite as

Distinguishing labeling of the actions of almost simple groups

  • Ákos Seress
  • Tsai-Lien Wong
  • Xuding Zhu


Suppose Γ is a group acting on a set X, written as (Γ,X). An r-labeling f: X→{1,2, ..., r} of X is called distinguishing for (Γ,X) if for all σ∈Γ,σ≠1, there exists an element xX such that f(x)≠f(x σ ). The distinguishing number d(Γ,X) of (Γ,X) is the minimum r for which there is a distinguishing r-labeling for (Γ,X). If Γ is the automorphism group of a graph G, then d(Γ,V (G)) is denoted by d(G), and is called the distinguishing number of the graph G. The distinguishing set of Γ-actions is defined to be D*(Γ)={d(Γ,X): Γ acts on X}, and the distinguishing set of Γ-graphs is defined to be D(Γ)={d(G): Aut(G)≅Γ}. This paper determines the distinguishing set of Γ-actions and the distinguishing set of Γ-graphs for almost simple groups Γ.

Mathematics Subject Classification (2000)

20G15 05C25 20B25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. O. Albertson and K. L. Collins: Symmetry breaking in graphs, Electron. J. Combin. 3 (1996) #R18, 17.Google Scholar
  2. [2]
    M. O. Albertson and D. L. Boutin: Using determining sets to distinguish Kneser graphs, Electron. J. Combin. 14 (2007), no. 1, #R20, 9.Google Scholar
  3. [3]
    P. Cameron, P. M. Neumann and J. Saxl: On groups with no regular orbits on the set of subsets, Arch. Math. 43 (1984), 295–296.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    G. H. Chan: A characterization of minimal (k)-groups of degree n≤3k, Linear and Multilinear Algebra 4 (1976/77), No. 4, 285–305.MathSciNetCrossRefGoogle Scholar
  5. [5]
    K. L. Collins: private communication, 2006.Google Scholar
  6. [6]
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson: Atlas of Finite Groups, Clarendon Press, Oxford, 1985.zbMATHGoogle Scholar
  7. [7]
    S. Dolfi: Orbits of permutation groups on the power set, Arch. Math. 75 (2000), 321–327.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    The GAP Group: GAP — Groups, Algorithms and Programming, Version 4.4.12, 2008. (
  9. [9]
    D. Gluck: Trivial set-stabilizers in finite permutation groups, Can. J. Math. XXXV (1983), No. 1, 59–67.MathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Jiang: Distinguishing labeling of S 5-actions, Master Thesis, National Sun Yat-sen University, 2006.Google Scholar
  11. [11]
    S. Klavžar, T. Wong and X. Zhu: Distinguishing labelings of group action on vector spaces and graphs, Journal of Algebra 303 (2006), 626–641.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    M. W. Liebeck: Graphs whose full automorphism group is a symmetric group, J. Austral. Math. Soc. Ser. A 44 (1988), 46–63.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    D. Marusic: On vertex symmetric digraphs, Discrete Mathematics, 36 (1981), 69–81.MathSciNetzbMATHGoogle Scholar
  14. [14]
    D. Marusic and R. Scapellato: Classifying vertex-transitive graphs whose order is a product of two primes, Combinatorica 14(2)(1994), 187–201.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    D. W. Miller: On a theorem of Hölder, Amer. Math. Monthly 65 (1958), 252–254.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Yoav Segev: The commuting graph and minimal nonsolvable groups, Geometriae Dedicata 88 (2001), 55–66.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    A. Seress: Primitive groups with no regular orbits on the set of subsets, Bull. London Math. Soc. 29 (1997), 697–704.MathSciNetCrossRefGoogle Scholar
  18. [18]
    A. Seress: The minimal base size of primitive solvable permutation groups, J. London Math. Soc. 53 (1996), No. 2, 243–255.MathSciNetzbMATHGoogle Scholar
  19. [19]
    M. Suzuki: Group theory. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 247. Springer-Verlag, Berlin-New York, 1982.Google Scholar
  20. [20]
    J. Tymoczko: Distinguishing numbers for graphs and groups, Electron. J. Combin. 11 (2004), #R63, 13.Google Scholar
  21. [21]
  22. [22]
    M. Yossi: On permutation groups and partitions, Comm. Algebra 30 (2002), No. 10, 4889–4903.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    H. Wielandt: Finite permutation groups, Academic Press, New York, 1964.zbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer Verlag 2011

Authors and Affiliations

  • Ákos Seress
    • 1
    • 4
  • Tsai-Lien Wong
    • 2
    • 5
  • Xuding Zhu
    • 3
  1. 1.Centre for the Mathematics of Symmetry and ComputationThe University of Western AustraliaCrawleyAustralia
  2. 2.Department of Applied MathematicsNational Sun Yat-sen UniversityKaohsiungTaiwan
  3. 3.Department of MathematicsZhejiang Normal UniversityJinhuaChina
  4. 4.Department of MathematicsThe Ohio State UniversityColumbusUSA
  5. 5.National Center for Theoretical SciencesTainanTaiwan

Personalised recommendations