, Volume 30, Issue 6, pp 735–743 | Cite as

An asymptotic bound for the complexity of monotone graph properties

  • Torsten Korneffel
  • Eberhard TrieschEmail author


We present an application of the topological approach of Kahn, Saks and Sturtevant to the evasiveness conjecture for monotone graph properties. Although they proved evasiveness for every prime power of vertices, the best asymtotic lower bound for the (decision tree) complexity c(n) known so far is ¼n 2, proved in the same paper. In case that the evasiveness conjecture holds, it is ½n(n−1).We demonstrate some techniques to improve the 1/4 bound and show \( c(n) \geqslant \tfrac{8} {{25}}n^2 - o(n^2 ) \).

Mathematics Subject Classification (2000)

05C25 05C99 68Q17 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Björner: Topological methods, in: Handbook of Combinatorics (Graham et al., eds.), Vol. 2, 1995 ([5]), pages 1819–1872.Google Scholar
  2. [2]
    M. R. Best, P. van Emde Boas and H. W. Lenstra Jr.: A sharpened version of the Aanderaa-Rosenberg conjecture, Math. Centrum Tracts Report ZW 30/74, Amsterdam, 1974.Google Scholar
  3. [3]
    A. Chakrabarti, S. Khot and Y. Shi: Evasiveness of subgraph containment and related properties, SIAM J. Comput. 31(3) (2001), 866–875.CrossRefMathSciNetGoogle Scholar
  4. [4]
    J. D. Dixon and B. Mortimer: Permutation Groups, volume 163, Springer-Verlag, 1996.Google Scholar
  5. [5]
    R. L. Graham, M. Grötschel and L. Lovász, editors: Handbook of combinatorics, Vol. 2, Cambridge, MA, USA, 1995, MIT Press.Google Scholar
  6. [6]
    J. Kahn, M. Saks and D. Sturtevant: A topological approach to evasiveness, Combinatorica4(4) (1984), 297–306.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    V. King: A lower bound for the recognition of digraph properties, Combinatorica10(1) (1990), 53–59.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    D. J. Kleitman and D. J. Kwiatkowski: Further results on the Aanderaa-Rosenberg conjecture, J. Combinatorial Theory, Ser. B28(1) (1980), 85–95.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    W. S. Massey: A Basic Course in Algebraic Topology, Number 127 in Graduate Texts in Mathematics, Springer, 1991.Google Scholar
  10. [10]
    R. Oliver: Fixed-point sets of group actions on finite acyclic complexes, Comment. Math. Helv. 50(1) (1975), 155–177.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    R. L. Rivest and J. Vuillemin: On recognizing graph properties from adjacency matrices, Theor. Comput. Sci. 3(3) (1976/77), 371–384.CrossRefMathSciNetGoogle Scholar
  12. [12]
    A. L. Rosenberg: On the time required to recognize properties of graphs: a problem; SIGACT News5(4) (1973), 15–16.CrossRefGoogle Scholar
  13. [13]
    P. A. Smith: Fixed point theorems for periodic transformations, Amer. J. Math.63 (1941), 1–8.CrossRefMathSciNetGoogle Scholar
  14. [14]
    E. H. Spanier: Algebraic topology, McGraw-Hill series in higher mathematics, McGraw-Hill, New York [u.a.], 1966.zbMATHGoogle Scholar
  15. [15]
    E. Triesch: Some results on elusive graph properties, SIAM J. Comput. 23(2) (1994), 247–254.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    E. Triesch: On the recognition complexity of some graph properties, Combinatorica16(2) (1996), 259–268.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    A. C. Yao: Monotone bipartite graph properties are evasive, SIAM J. Comput. 17(3) (1988), 517–520.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer Verlag 2010

Authors and Affiliations

  1. 1.KölnGermany
  2. 2.Lehrstuhl II für MathematikRWTH AachenAachenGermany

Personalised recommendations