, Volume 30, Issue 4, pp 419–434 | Cite as

Locally finite homogeneous graphs



A connected graph G is said to be z-homogeneous if any isomorphism between finite connected induced subgraphs of G extends to an automorphism of G. Finite z-homogeneous graphs were classified in [17]. We show that z-homogeneity is equivalent to finite-transitivity on the class of infinite locally finite graphs. Moreover, we classify the graphs satisfying these properties. Our study of bipartite z-homogeneous graphs leads to a new characterization for hypercubes.

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. R. Alfuraidan and J. I. Hall: Smith’s Theorem and a characterization of the 6-cube as distance-transitive graph, Journal of Algebraic Combinatorics24(2) (2006), 195–207.CrossRefMathSciNetGoogle Scholar
  2. [2]
    A. S. Asratian, T. M. J. Denley and R. Häggkvist: Bipartite Graphs and their Applications, Cambridge University Press, 1998.Google Scholar
  3. [3]
    H. J. Bandelt and V. Chepoi: Metric graph theory and geometry: a survey; Contemporary Mathematics453 (2008), 49–86.MathSciNetGoogle Scholar
  4. [4]
    A. E. Brouwer, A. M. Cohen and A. Neumaier: Distance Regular Graphs, Berlin, New York, Springer-Verlag, 1989.MATHGoogle Scholar
  5. [5]
    P. J. Cameron: 6-transitive graphs, J. Comb. Theory, Ser. B28 (1980), 168–179.CrossRefMATHGoogle Scholar
  6. [6]
    P. J. Cameron: Automorphism groups of graphs, in: Selected Topics in Graph Theory II, pp. 89–127, Academic Press, 1983.Google Scholar
  7. [7]
    H. Enomoto: Combinatorially homogeneous graphs, J. Comb. Theory, Ser. B30(2) (1981), 215–223.CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    A. Gardiner: Homogeneous graphs, J. Comb. Theory, Ser. B20 (1976), 94–102.CrossRefMathSciNetMATHGoogle Scholar
  9. [9]
    A. Gardiner: Homogeneous graphs stability, J. Austral. Math. Soc., Ser. A21(3) (1976), 371–375.CrossRefMathSciNetMATHGoogle Scholar
  10. [10]
    A. Gardiner: Homogeneity conditions in graphs, J. Comb. Theory, Ser. B24(3) (1978), 301–310.CrossRefMathSciNetMATHGoogle Scholar
  11. [11]
    A. Gardiner and C. E. Praeger: Distance-Transitive graphs of valency five, Proceedings of the Edinburgh Mathematical Society30 (1987), 73–81.CrossRefMathSciNetMATHGoogle Scholar
  12. [12]
    C. Godsil and G. Royle: Algebraic Graph Theory, Graduate Texts in Mathematics, 207. Springer-Verlag, New York, 2001.MATHGoogle Scholar
  13. [13]
    R. Gray and H. D. MacPherson: Countable connected-homogeneous graphs, J. Comb. Theory, Ser. B100(2) (2010), 97–118.CrossRefMathSciNetMATHGoogle Scholar
  14. [14]
    S. Hedman and W. Y. Pong: Quantifier-eliminable locally finite graphs, Mathematical Logic Quarterly, submitted.Google Scholar
  15. [15]
    A. H. Lachlan and R. E. Woodrow: Countable homogeneous undirected graphs, Trans. Amer. Math. Soc. 262 (1980), 51–94.MathSciNetMATHGoogle Scholar
  16. [16]
    H. D. MacPherson: Infinite distance-transitive graphs of finite valency, Combinatorica2(1) (1982), 63–70.CrossRefMathSciNetMATHGoogle Scholar
  17. [17]
    R. Weiss: Glatt einbettbare Untergraphen, J. Comb. Theory, Ser. B21 (1976), 276–281.CrossRefGoogle Scholar
  18. [18]
    H. P. Yap: Some Topics in Graph Theory, Cambridge University Press, 1986.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer Verlag 2010

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceFlorida Southern CollegeLakelandUSA
  2. 2.Department of MathematicsCalifornia State University Dominguez HillsCarsonUSA

Personalised recommendations