, Volume 28, Issue 2, pp 229–260 | Cite as

An approximate Dirac-type theorem for k-uniform hypergraphs

  • Vojtěch RödlEmail author
  • Endre Szemerédi
  • Andrzej Ruciński


A k-uniform hypergraph is hamiltonian if for some cyclic ordering of its vertex set, every k consecutive vertices form an edge. In 1952 Dirac proved that if the minimum degree in an n-vertex graph is at least n/2 then the graph is hamiltonian.

We prove an approximate version of an analogous result for uniform hypergraphs: For every K ≥ 3 and γ > 0, and for all n large enough, a sufficient condition for an n-vertex k-uniform hypergraph to be hamiltonian is that each (k − 1)-element set of vertices is contained in at least (1/2 + γ)n edges.

Mathematics Subject Classification (2000)

05C65 05C45 05D05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Alon and J. Spencer: The Probabilistic Method, Second Edition, John Wiley and Sons, New York (2000).zbMATHGoogle Scholar
  2. [2]
    J. C. Bermond, et al.: Hypergraphes hamiltoniens, Prob. Comb. Theorie Graph Orsay 260 (1976), 39–43.MathSciNetGoogle Scholar
  3. [3]
    G. A. Dirac: Some theorems of abstract graphs, Proc. London Math. Soc. 3 (1952), 69–81.CrossRefMathSciNetGoogle Scholar
  4. [4]
    P. Frankl and V. Rödl: Extremal problems on set systems, Random Struct. Algorithms 20(2) (2002), 131–164.CrossRefzbMATHGoogle Scholar
  5. [5]
    P. Haxell, T. Łuczak, Y. Peng, V. Rödl, A. Ruciński, M. Simonovits and J. Skokan: The Ramsey number for hypergraph cycles I, J. Combin. Theory Series A 113 (2006), 67–83.CrossRefzbMATHGoogle Scholar
  6. [6]
    S. Janson, T. Łuczak and A. Ruciński: Random Graphs, John Wiley and Sons, New York (2000).zbMATHGoogle Scholar
  7. [7]
    Gy. Y. Katona and H. A. Kierstead: Hamiltonian chains in hypergraphs, J. Graph Theory 30(3) (1999), 205–212.CrossRefMathSciNetzbMATHGoogle Scholar
  8. [8]
    D. Kühn and D. Osthus: Loose Hamilton cycles in 3-uniform hypergraphs of large minimum degree, J. Combin. Theory Series B 96 (2006), 767–821.CrossRefzbMATHGoogle Scholar
  9. [9]
    V. Rödl, A. Ruciński and E. Szemerédi: A Dirac-type theorem for 3-uniform hypergraphs, Combinatorics, Probability and Computing 15(1–2) (2006), 229–251.CrossRefMathSciNetzbMATHGoogle Scholar
  10. [10]
    E. Szemerédi: Regular partitions of graphs, in: Problemes combinatoires et theorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp. 399–401, Colloq. Internat. CNRS, 260, CNRS, Paris (1978).Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Vojtěch Rödl
    • 1
    Email author
  • Endre Szemerédi
    • 2
  • Andrzej Ruciński
    • 3
  1. 1.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA
  2. 2.Department of Computer ScienceRutgers UniversityPiscatawayUSA
  3. 3.Department of Discrete MathematicsA. Mickiewicz UniversityPoznańPoland

Personalised recommendations