, Volume 28, Issue 1, pp 113–125 | Cite as

Near optimal bounds for the Erdős distinct distances problem in high dimensions

  • József SolymosiEmail author
  • Van H. Vu


We show that the number of distinct distances in a set of n points in ℝ d is Ω(n 2/d − 2 / d(d + 2)), d ≥ 3. Erdős’ conjecture is Ω(n 2/d ).

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Pach and P. Agarwal: Combinatorial geometry, Wiley-Interscience Series in Discrete Mathematics and Optimization, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1995, xiv+354 pp.zbMATHGoogle Scholar
  2. [2]
    B. Aronov, J. Pach, M. Sharir and G. Tardos: Distinct Distances in Three and Higher Dimensions, Combinatorics, Probability and Computing 13(3) (2004), 283–293.CrossRefMathSciNetzbMATHGoogle Scholar
  3. [3]
    B. Chazelle and J. Friedman: A deterministic view of random sampling and its use in geometry, Combinatorica 10(3) (1990), 229–249.CrossRefMathSciNetzbMATHGoogle Scholar
  4. [4]
    F. Chung: The number of different distances determined by n points in the plane, J. Combin. Theory Ser. A 36(3) (1984), 342–354.CrossRefMathSciNetzbMATHGoogle Scholar
  5. [5]
    F. Chung, E. Szemerédi and W. Trotter: The number of different distances determined by a set of points in the Euclidean plane, Discrete Comput. Geom. 7(1) (1992), 1–11.CrossRefMathSciNetzbMATHGoogle Scholar
  6. [6]
    K. Clarkson, H. Edelsbrunner, L. Gubias, M. Sharir and E. Welzl: Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990), 99–160.CrossRefMathSciNetzbMATHGoogle Scholar
  7. [7]
    P. Erdős: On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.CrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Iosevich: Curvature, Combinatorics, and the Fourier Transform; Notices of the American Mathematical Society 48 (2001), 577–583.MathSciNetzbMATHGoogle Scholar
  9. [9]
    A. Iosevich: Szemerédi-Trotter incidence theorem, related results, and amusing consequences; in Proceedings of Minicorsi di Analisi Matematica, Padova (to appear).Google Scholar
  10. [10]
    J. Matousek: Lectures on Discrete Geometry, Graduate Texts in Mathematics, 212, Springer-Verlag, New York, 2002, xvi+481 pp.zbMATHGoogle Scholar
  11. [11]
    L. Moser: On the different distances determined by n points, Amer. Math. Monthly 59 (1952), 85–91.CrossRefMathSciNetzbMATHGoogle Scholar
  12. [12]
    J. Solymosi and Cs. D. Tóth: Distinct distances in the plane, Discrete Comput. Geom. 25(4) (The Micha Sharir birthday issue) (2001), 629–634.MathSciNetzbMATHGoogle Scholar
  13. [13]
    J. Solymosi and V. H. Vu: Distinct distances in high dimensional homogeneous sets, in Towards a Theory of Geometric Graphs (J. Pach, ed.), pp. 259–268, Contemporary Mathematics, vol. 342, Amer. Math. Soc., 2004.Google Scholar
  14. [14]
    L. Székely: Crossing numbers and hard Erdős problems in discrete geometry, Combin. Probab. Comput. 6(3) (1997), 353–358.CrossRefMathSciNetzbMATHGoogle Scholar
  15. [15]
    G. Tardos: On distinct sums and distinct distances, Advances in Mathematics 180(1) (2003), 275–289.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsUBCVancouverCanada
  2. 2.Department of Mathematics RutgersPiscatawayUSA

Personalised recommendations