International Journal of Biometeorology

, Volume 63, Issue 8, pp 1099–1115 | Cite as

Impacts of exposure to ambient temperature on burden of disease: a systematic review of epidemiological evidence

  • Jian Cheng
  • Zhiwei Xu
  • Hilary Bambrick
  • Hong Su
  • Shilu Tong
  • Wenbiao HuEmail author
Review Paper


Ambient temperature is an important determinant of mortality and morbidity, making it necessary to assess temperature-related burden of disease (BD) for the planning of public health policies and adaptive responses. To systematically review existing epidemiological evidence on temperature-related BD, we searched three databases (PubMed, Web of Science, and Scopus) on 1 September 2018. We identified 97 studies from 56 counties for this review, of which 75 reported the fraction or number of health outcomes (include deaths and diseases) attributable to temperature, and 22 reported disability-adjusted life years (include years of life lost and years lost due to disability) related to temperature. Non-optimum temperatures (i.e., heat and cold) were responsible for > 2.5% of mortality in all included high-income countries/regions, and > 3.0% of mortality in all included middle-income countries. Cold was mostly reported to be the primary source of mortality burden from non-optimum temperatures, but the relative role of three different temperature exposures (i.e., heat, cold, and temperature variability) in affecting morbidity and mortality remains unclear so far. Under the warming climate scenario, almost all projections assuming no population adaptation suggested future increase in heat-related but decrease in cold-related BD. However, some studies emphasized the great uncertainty in future pattern of temperature-related BD, largely depending on the scenarios of climate, population adaptation, and demography. We also identified important discrepancies and limitations in current research methodologies employed to measure temperature exposures and model temperature-health relationship, and calculate the past and project future temperature-related BD. Overall, exposure to non-optimum ambient temperatures has become and will continue to be a considerable contributor to the global and national BD, but future research is still needed to develop a stronger methodological framework for assessing and comparing temperature-related BD across different settings.


Temperature Disease burden Attributable risk DALY 



Jian Cheng was supported by the China Scholarship Council Postgraduate Scholarship and the Queensland University of Technology Higher Degree Research Tuition Fee Sponsorship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

484_2019_1716_MOESM1_ESM.pdf (2.1 mb)
ESM 1 (PDF 2151 kb)


  1. Åström DO, Tornevi A, Ebi KL, Rocklöv J, Forsberg B (2016) Evolution of minimum mortality temperature in Stockholm, Sweden, 1901-2009. Environ Health Perspect 124:740–744CrossRefGoogle Scholar
  2. Baccini M, Kosatsky T, Analitis A, Anderson HR, D'Ovidio M, Menne B, Michelozzi P, Biggeri A, the PHEWE Collaborative Group (2011) Impact of heat on mortality in 15 European cities: attributable deaths under different weather scenarios. J Epidemiol Community Health 65:64–70CrossRefGoogle Scholar
  3. Baccini M, Kosatsky T, Biggeri A (2013) Impact of summer heat on urban population mortality in Europe during the 1990s: an evaluation of years of life lost adjusted for harvesting. PLoS One 8:e69638CrossRefGoogle Scholar
  4. Banu S, Hu W, Guo Y, Hurst C, Tong S (2014) Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh. Environ Int 63:137–142CrossRefGoogle Scholar
  5. Barnett AG, Tong S, Clements ACA (2010) What measure of temperature is the best predictor of mortality? Environ Res 110:604–611CrossRefGoogle Scholar
  6. Basu R, Samet JM (2002) Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev 24:190–202CrossRefGoogle Scholar
  7. Benmarhnia T, Oulhote Y, Petit C, Lapostolle A, Chauvin P, Zmirou-Navier D, Deguen S (2014a) Chronic air pollution and social deprivation as modifiers of the association between high temperature and daily mortality. Environ Health 13:53CrossRefGoogle Scholar
  8. Benmarhnia T, Sottile MF, Plante C, Brand A, Casati B, Fournier M, Smargiassi A (2014b) Variability in temperature-related mortality projections under climate change. Environ Health Perspect 122:1293–1298CrossRefGoogle Scholar
  9. Bunker A, Sewe MO, Sie A, Rocklov J, Sauerborn R (2017) Excess burden of non-communicable disease years of life lost from heat in rural Burkina Faso: a time series analysis of the years 2000-2010. BMJ Open 7:e018068CrossRefGoogle Scholar
  10. Carmona R, Díaz J, Mirón IJ, Ortíz C, León I, Linares C (2016a) Geographical variation in relative risks associated with cold waves in Spain: the need for a cold wave prevention plan. Environ Int 88:103–111CrossRefGoogle Scholar
  11. Carmona R, Díaz J, Mirón IJ, Ortiz C, Luna MY, Linares C (2016b) Mortality attributable to extreme temperatures in Spain: a comparative analysis by city. Environ Int 91:22–28CrossRefGoogle Scholar
  12. Carmona R, Linares C, Ortiz C, Miron IJ, Luna MY, Diaz J (2017) Spatial variability in threshold temperatures of heat wave mortality: impact assessment on prevention plans. Int J Environ Health Res 27:463–475CrossRefGoogle Scholar
  13. Cheng J, Xu Z, Zhao D, Xie M, Zhang H, Wang S, Su H (2016) The burden of extreme heat and heatwave on emergency ambulance dispatches: a time-series study in Huainan, China. Sci Total Environ 571:27–33CrossRefGoogle Scholar
  14. Cheng J, Xie MY, Zhao KF et al (2017a) Impacts of ambient temperature on the burden of bacillary dysentery in urban and rural Hefei, China. Epidemiol Infect 145:1567–1576CrossRefGoogle Scholar
  15. Cheng J, Xu Z, Bambrick H, Su H, Tong S, Hu W (2017b) The mortality burden of hourly temperature variability in five capital cities, Australia: time-series and meta-regression analysis. Environ Int 109:10–19CrossRefGoogle Scholar
  16. Cheng J, Xu Z, Bambrick H, Su H, Tong S, Hu W (2018a) Heatwave and elderly mortality: an evaluation of death burden and health costs considering short-term mortality displacement. Environ Int 115:334–342CrossRefGoogle Scholar
  17. Cheng J, Zhang Y, Zhang W, Xu Z, Bambrick H, Hu W, Tong S (2018b) Assessment of heat- and cold-related emergency department visits in cities of China and Australia: population vulnerability and attributable burden. Environ Res 166:610–619CrossRefGoogle Scholar
  18. Chung SE, Cheong HK, Park JH, Kim JH, Han H (2017) Current and projected burden of disease from high ambient temperature in Korea. Epidemiology 28(Suppl 1):S98–S105CrossRefGoogle Scholar
  19. Cui Y, Yin F, Deng Y, Volinn E, Chen F, Ji K, Zeng J, Zhao X, Li X (2016) Heat or cold: which one exerts greater deleterious effects on health in a basin climate City? Impact of ambient temperature on mortality in Chengdu, China. Int J Environ Res Public Health 13Google Scholar
  20. de’ Donato FK, Leone M, Scortichini M et al (2015) Changes in the effect of heat on mortality in the last 20 years in nine European cities. Results from the PHASE project. Int J Environ Res Public Health 12:15567–15583CrossRefGoogle Scholar
  21. de’Donato F, Scortichini M, De Sario M, de Martino A, Michelozzi P (2018) Temporal variation in the effect of heat and the role of the Italian heat prevention plan. Public Health 161:154–162CrossRefGoogle Scholar
  22. Diaz J, Carmona R, Miron IJ, Ortiz C, Leon I, Linares C (2015a) Geographical variation in relative risks associated with heat: update of Spain’s heat wave prevention plan. Environ Int 85:273–283CrossRefGoogle Scholar
  23. Diaz J, Carmona R, Miron IJ, Ortiz C, Linares C (2015b) Comparison of the effects of extreme temperatures on daily mortality in Madrid (Spain), by age group: the need for a cold wave prevention plan. Environ Res 143:186–191CrossRefGoogle Scholar
  24. Diaz J, Carmona R, Miron IJ, Luna MY, Linares C (2018) Time trend in the impact of heat waves on daily mortality in Spain for a period of over thirty years (1983-2013). Environ Int 116:10–17CrossRefGoogle Scholar
  25. Egondi T, Kyobutungi C, Rocklöv J (2015) Temperature variation and heat wave and cold spell impacts on years of life lost among the urban poor population of Nairobi, Kenya. Int J Environ Res Public Health 12:2735–2748CrossRefGoogle Scholar
  26. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, Alexander L, Estep K, Hassen Abate K, Akinyemiju TF, Ali R, Alvis-Guzman N, Azzopardi P, Banerjee A, Bärnighausen T, Basu A, Bekele T, Bennett DA, Biadgilign S, Catalá-López F, Feigin VL, Fernandes JC, Fischer F, Gebru AA, Gona P, Gupta R, Hankey GJ, Jonas JB, Judd SE, Khang YH, Khosravi A, Kim YJ, Kimokoti RW, Kokubo Y, Kolte D, Lopez A, Lotufo PA, Malekzadeh R, Melaku YA, Mensah GA, Misganaw A, Mokdad AH, Moran AE, Nawaz H, Neal B, Ngalesoni FN, Ohkubo T, Pourmalek F, Rafay A, Rai RK, Rojas-Rueda D, Sampson UK, Santos IS, Sawhney M, Schutte AE, Sepanlou SG, Shifa GT, Shiue I, Tedla BA, Thrift AG, Tonelli M, Truelsen T, Tsilimparis N, Ukwaja KN, Uthman OA, Vasankari T, Venketasubramanian N, Vlassov VV, Vos T, Westerman R, Yan LL, Yano Y, Yonemoto N, Zaki MES, Murray CJL (2017) Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm hg, 1990-2015. JAMA 317:165–182CrossRefGoogle Scholar
  27. Gasparrini A, Leone M (2014) Attributable risk from distributed lag models. BMC Med Res Methodol 14:55CrossRefGoogle Scholar
  28. Gasparrini A, Armstrong B, Kovats S, Wilkinson P (2012) The effect of high temperatures on cause-specific mortality in England and Wales. Occup Environ Med 69:56–61CrossRefGoogle Scholar
  29. Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Tobias A, Tong S, Rocklöv J, Forsberg B, Leone M, de Sario M, Bell ML, Guo YLL, Wu CF, Kan H, Yi SM, de Sousa Zanotti Stagliorio Coelho M, Saldiva PHN, Honda Y, Kim H, Armstrong B (2015) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386:369–375CrossRefGoogle Scholar
  30. Gasparrini A, Guo Y, Sera F, Vicedo-Cabrera AM, Huber V, Tong S, de Sousa Zanotti Stagliorio Coelho M, Nascimento Saldiva PH, Lavigne E, Matus Correa P, Valdes Ortega N, Kan H, Osorio S, Kyselý J, Urban A, Jaakkola JJK, Ryti NRI, Pascal M, Goodman PG, Zeka A, Michelozzi P, Scortichini M, Hashizume M, Honda Y, Hurtado-Diaz M, Cesar Cruz J, Seposo X, Kim H, Tobias A, Iñiguez C, Forsberg B, Åström DO, Ragettli MS, Guo YL, Wu CF, Zanobetti A, Schwartz J, Bell ML, Dang TN, van DD, Heaviside C, Vardoulakis S, Hajat S, Haines A, Armstrong B (2017) Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Health 1:e360–e367CrossRefGoogle Scholar
  31. GBD 2016 Risk Factors Collaborators (2017) Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 390:1345–1422CrossRefGoogle Scholar
  32. Gosling SN, Hondula DM, Bunker A, Ibarreta D, Liu J, Zhang X, Sauerborn R (2017) Adaptation to climate change: a comparative analysis of modeling methods for heat-related mortality. Environ Health Perspect 125:087008CrossRefGoogle Scholar
  33. Guo Y, Li S, Tian Z, Pan X, Zhang J, Williams G (2013) The burden of air pollution on years of life lost in Beijing, China, 2004-08: retrospective regression analysis of daily deaths. BMJ 347:f7139CrossRefGoogle Scholar
  34. Guo Y, Gasparrini A, Armstrong B, Li S, Tawatsupa B, Tobias A, Lavigne E, de Sousa Zanotti Stagliorio Coelho M, Leone M, Pan X, Tong S, Tian L, Kim H, Hashizume M, Honda Y, Guo YLL, Wu CF, Punnasiri K, Yi SM, Michelozzi P, Saldiva PHN, Williams G (2014) Global variation in the effects of ambient temperature on mortality. Epidemiology 25:781–789CrossRefGoogle Scholar
  35. Guo Y, Gasparrini A, Armstrong BG, Tawatsupa B, Tobias A, Lavigne E, Coelho MSZS, Pan X, Kim H, Hashizume M, Honda Y, Guo YL, Wu CF, Zanobetti A, Schwartz JD, Bell ML, Overcenco A, Punnasiri K, Li S, Tian L, Saldiva P, Williams G, Tong S (2016) Temperature variability and mortality: a multi-country study. Environ Health Perspect 124:1554–1559CrossRefGoogle Scholar
  36. Guo P, Zheng M, Wang Y et al (2017) Effects of ambient temperature on stroke hospital admissions: results from a time-series analysis of 104,432 strokes in Guangzhou, China. Sci Total Environ 580:307–315CrossRefGoogle Scholar
  37. Hajat S, Vardoulakis S, Heaviside C, Eggen B (2014) Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J Epidemiol Community Health 68:641–648CrossRefGoogle Scholar
  38. Heaviside C, Tsangari H, Paschalidou A, Vardoulakis S, Kassomenos P, Georgiou KE, Yamasaki EN (2016) Heat-related mortality in Cyprus for current and future climate scenarios. Sci Total Environ 569-570:627–633CrossRefGoogle Scholar
  39. Huang C, Barnett AG, Wang X, Vaneckova P, FitzGerald G, Tong S (2011) Projecting future heat-related mortality under climate change scenarios: a systematic review. Environ Health Perspect 119:1681–1690CrossRefGoogle Scholar
  40. Huang C, Barnett AG, Wang X, Tong S (2012a) Effects of extreme temperatures on years of life lost for cardiovascular deaths: a time series study in Brisbane, Australia. Circ Cardiovasc Qual Outcomes 5:609–614CrossRefGoogle Scholar
  41. Huang C, Barnett AG, Wang X, Tong S (2012b) The impact of temperature on years of life lost in Brisbane, Australia. Nat Clim Chang 2:265–270CrossRefGoogle Scholar
  42. Huang C, Cheng J, Phung D, Tawatsupa B, Hu W, Xu Z (2018a) Mortality burden attributable to heatwaves in Thailand: a systematic assessment incorporating evidence-based lag structure. Environ Int 121:41–50CrossRefGoogle Scholar
  43. Huang J, Li G, Liu Y, Huang J, Xu G, Qian X, Cen Z, Pan X, Xu A, Guo X, He T (2018b) Projections for temperature-related years of life lost from cardiovascular diseases in the elderly in a Chinese city with typical subtropical climate. Environ Res 167:614–621CrossRefGoogle Scholar
  44. Huynen MM, Martens P (2015) Climate change effects on heat- and cold-related mortality in the Netherlands: a scenario-based integrated environmental health impact assessment. Int J Environ Res Public Health 12:13295–13320CrossRefGoogle Scholar
  45. IPCC (Intergovernmental Panel on Climate Change) (2013) Summary for policymakers. Climate change 2013: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  46. Johnson NC, Xie SP, Kosaka Y, Li X (2018) Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat Commun 9(1):1724CrossRefGoogle Scholar
  47. Kim CT, Lim YH, Woodward A, Kim H (2015) Heat-attributable deaths between 1992 and 2009 in Seoul, South Korea. PLoS One 10:e0118577CrossRefGoogle Scholar
  48. Lee W-H, Lim Y-H, Dang TN, Seposo X, Honda Y, Guo YLL, Jang HM, Kim H (2017) An investigation on attributes of ambient temperature and diurnal temperature range on mortality in five east-Asian countries. Sci Rep 7:10207CrossRefGoogle Scholar
  49. Lee S, Lee H, Myung W, Kim EJ, Kim H (2018a) Mental disease-related emergency admissions attributable to hot temperatures. Sci Total Environ 616-617:688–694CrossRefGoogle Scholar
  50. Lee W, Bell ML, Gasparrini A, Armstrong BG, Sera F, Hwang S, Lavigne E, Zanobetti A, Coelho MSZS, Saldiva PHN, Osorio S, Tobias A, Zeka A, Goodman PG, Forsberg B, Rocklöv J, Hashizume M, Honda Y, Guo YLL, Seposo X, van Dung D, Dang TN, Tong S, Guo Y, Kim H (2018b) Mortality burden of diurnal temperature range and its temporal changes: a multicountry study. Environ Int 110:123–130CrossRefGoogle Scholar
  51. Lee W, Choi HM, Kim D, Honda Y, Guo YL, Kim H (2018c) Temporal changes in morality attributed to heat extremes for 57 cities in Northeast Asia. Sci Total Environ 616-617:703–709CrossRefGoogle Scholar
  52. Lee W, Choi HM, Lee JY, Kim DH, Honda Y, Kim H (2018d) Temporal changes in mortality impacts of heat wave and cold spell in Korea and Japan. Environ Int 116:136–146CrossRefGoogle Scholar
  53. Li T, Horton RM, Bader DA, Zhou M, Liang X, Ban J, Sun Q, Kinney PL (2016) Aging will amplify the heat-related mortality risk under a changing climate: projection for the elderly in Beijing, China. Sci Rep 6:28161CrossRefGoogle Scholar
  54. Li G, Huang J, Xu G, Pan X, Qian X, Xu J, Zhao Y, Zhang T, Liu Q, Guo X, He T (2017) Temporal variation in associations between temperature and years of life lost in a southern China city with typical subtropical climate. Sci Rep 7:4650CrossRefGoogle Scholar
  55. Li G, Guo Q, Liu Y, Li Y, Pan X (2018a) Projected temperature-related years of life lost from stroke due to global warming in a temperate climate city, Asia: disease burden caused by future climate change. Stroke 49:828–834CrossRefGoogle Scholar
  56. Li G, Li Y, Tian L, Guo Q, Pan X (2018b) Future temperature-related years of life lost projections for cardiovascular disease in Tianjin, China. Sci Total Environ 630:943–950CrossRefGoogle Scholar
  57. Li Y, Li G, Zeng Q, Liang F, Pan X (2018c) Projecting temperature-related years of life lost under different climate change scenarios in one temperate megacity, China. Environ Pollut 233:1068–1075CrossRefGoogle Scholar
  58. Luan G, Yin P, Li T, Wang L, Zhou M (2017) The years of life lost on cardiovascular disease attributable to ambient temperature in China. Sci Rep 7:13531CrossRefGoogle Scholar
  59. Luo Y, Li H, Huang F, van Halm-Lutterodt N, Qin Xu, Wang A, Guo J, Tao L, Li X, Liu M, Zheng D, Chen S, Zhang F, Yang X, Tan P, Wang W, Xie X, Guo X (2018) The cold effect of ambient temperature on ischemic and hemorrhagic stroke hospital admissions: a large database study in Beijing, China between years 2013 and 2014-utilizing a distributed lag non-linear analysis. Environ Pollut 232:90–96CrossRefGoogle Scholar
  60. Luque Fernández MA, Bauernfeind A, Jiménez JD, Gil CL, El Omeiri N, Guibert DH (2009) Influence of temperature and rainfall on the evolution of cholera epidemics in Lusaka, Zambia, 2003-2006: analysis of a time series. Trans R Soc Trop Med Hyg 103:137–143CrossRefGoogle Scholar
  61. Martinez GS, Baccini M, De Ridder K et al (2016) Projected heat-related mortality under climate change in the metropolitan area of Skopje. BMC Public Health 16:407CrossRefGoogle Scholar
  62. Martinez GS, Diaz J, Hooyberghs H, Lauwaet D, de Ridder K, Linares C, Carmona R, Ortiz C, Kendrovski V, Adamonyte D (2018) Cold-related mortality vs heat-related mortality in a changing climate: a case study in Vilnius (Lithuania). Environ Res 166:384–393CrossRefGoogle Scholar
  63. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997CrossRefGoogle Scholar
  64. Odhiambo Sewe M, Bunker A, Ingole V, Egondi T, Oudin Åström D, Hondula DM, Rocklöv J, Schumann B (2018) Estimated effect of temperature on years of life lost: a retrospective time-series study of low-, middle-, and high-income regions. Environ Health Perspect 126:017004CrossRefGoogle Scholar
  65. Olowu WA, Niang A, Osafo C, Ashuntantang G, Arogundade FA, Porter J, Naicker S, Luyckx VA (2016) Outcomes of acute kidney injury in children and adults in sub-Saharan Africa: a systematic review. Lancet Glob Health 4:e242–e250CrossRefGoogle Scholar
  66. Oudin Astrom D, Ebi KL, Vicedo-Cabrera AM, Gasparrini A (2018) Investigating changes in mortality attributable to heat and cold in Stockholm, Sweden. Int J Biometeorol 62:1777–1780CrossRefGoogle Scholar
  67. Petkova EP, Vink JK, Horton RM, Gasparrini A, Bader DA, Francis JD, Kinney PL (2017) Towards more comprehensive projections of urban heat-related mortality: estimates for New York city under multiple population, adaptation, and climate scenarios. Environ Health Perspect 125:47–55CrossRefGoogle Scholar
  68. Prince MJ, Wu F, Guo Y, Gutierrez Robledo LM, O’Donnell M, Sullivan R, Yusuf S (2015) The burden of disease in older people and implications for health policy and practice. Lancet 385:549–562CrossRefGoogle Scholar
  69. Reyburn R, Kim DR, Emch M, Khatib A, von Seidlein L, Ali M (2011) Climate variability and the outbreaks of cholera in Zanzibar, East Africa: a time series analysis. Am J Trop Med Hyg 84:862–869CrossRefGoogle Scholar
  70. Ryti NR, Guo Y, Jaakkola JJ (2016) Global association of cold spells and adverse health effects: a systematic review and meta-analysis. Environ Health Perspect 124:12–22CrossRefGoogle Scholar
  71. Schwartz JD, Lee M, Kinney PL, Yang S, Mills D, Sarofim MC, Jones R, Streeter R, Juliana AS, Peers J, Horton RM (2015) Projections of temperature-attributable premature deaths in 209 U.S. cities using a cluster-based Poisson approach. Environ Health 14:85CrossRefGoogle Scholar
  72. Scortichini M, de’Donato F, De Sario M et al (2018) The inter-annual variability of heat-related mortality in nine European cities (1990-2010). Environ Health 17:66CrossRefGoogle Scholar
  73. Song C, He J, Wu L, Jin T, Chen X, Li R, Ren P, Zhang L, Mao H (2017) Health burden attributable to ambient PM2.5 in China. Environ Pollut 223:575–586CrossRefGoogle Scholar
  74. Stafoggia M, Forastiere F, Michelozzi P, Perucci CA (2009) Summer temperature-related mortality: effect modification by previous winter mortality. Epidemiology 20:575–583CrossRefGoogle Scholar
  75. Steenland K, Armstrong B (2006) An overview of methods for calculating the burden of disease due to specific risk factors. Epidemiology 17:512–519CrossRefGoogle Scholar
  76. Todd N, Valleron AJ (2015) Space-time covariation of mortality with temperature: a systematic study of deaths in France, 1968-2009. Environ Health Perspect 123:659–664CrossRefGoogle Scholar
  77. Tong S, Wang XY, FitzGerald G, McRae D, Neville G, Tippett V, Aitken P, Verrall K (2014) Development of health risk-based metrics for defining a heatwave: a time series study in Brisbane, Australia. BMC Public Health 14:435CrossRefGoogle Scholar
  78. Tong S, FitzGerald G, Wang XY, Aitken P, Tippett V, Chen D, Wang X, Guo Y (2015) Exploration of the health risk-based definition for heatwave: a multi-city study. Environ Res 142:696–702CrossRefGoogle Scholar
  79. Trærup SL, Ortiz RA, Markandya A (2011) The costs of climate change: a study of cholera in Tanzania. Int J Environ Res Public Health 8:4386–4405CrossRefGoogle Scholar
  80. Uribe-Leitz T, Jaramillo J, Maurer L, Fu R, Esquivel MM, Gawande AA, Haynes AB, Weiser TG (2016) Variability in mortality following caesarean delivery, appendectomy, and groin hernia repair in low-income and middle-income countries: a systematic review and analysis of published data. Lancet Glob Health 4:e165–e174CrossRefGoogle Scholar
  81. Vaneckova P, Neville G, Tippett V, Aitken P, FitzGerald G, Tong S (2011) Do biometeorological indices improve modeling outcomes of heat-related mortality? J Appl Meteorol Climatol 50:1165–1176CrossRefGoogle Scholar
  82. Vardoulakis S, Dear K, Hajat S, Heaviside C, Eggen B, McMichael AJ (2014) Comparative assessment of the effects of climate change on heat- and cold-related mortality in the United Kingdom and Australia. Environ Health Perspect 122:1285–1292CrossRefGoogle Scholar
  83. Vicedo-Cabrera AM, Sera F, Guo Y, Chung Y, Arbuthnott K, Tong S, Tobias A, Lavigne E, de Sousa Zanotti Stagliorio Coelho M, Hilario Nascimento Saldiva P, Goodman PG, Zeka A, Hashizume M, Honda Y, Kim H, Ragettli MS, Röösli M, Zanobetti A, Schwartz J, Armstrong B, Gasparrini A (2018) A multi-country analysis on potential adaptive mechanisms to cold and heat in a changing climate. Environ Int 111:239–246CrossRefGoogle Scholar
  84. WHO (World Health Organization) (2013) WHO methods and data sources for global burden of disease estimates 2000–11. accessed 18 Jan 2018
  85. World Population Prospects (2015) The 2015 revision, key findings and advance tables. United Nations, New York accessed 3 Feb 2018Google Scholar
  86. Wu X, Lu Y, Zhou S, Chen L, Xu B (2016) Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ Int 86:14–23CrossRefGoogle Scholar
  87. Xu Z, Hu W, Wang X, Huang C, Tong S (2014) The impact of temperature variability on years of life lost. Epidemiology 25:313–314CrossRefGoogle Scholar
  88. Xu Z, FitzGerald G, Guo Y, Jalaludin B, Tong S (2016) Impact of heatwave on mortality under different heatwave definitions: a systematic review and meta-analysis. Environ Int 89-90:193–203CrossRefGoogle Scholar
  89. Yang J, Ou CQ, Guo Y, Li L, Guo C, Chen PY, Lin HL, Liu QY (2015a) The burden of ambient temperature on years of life lost in Guangzhou, China. Sci Rep 5:12250CrossRefGoogle Scholar
  90. Yang J, Yin P, Zhou M, Ou CQ, Guo Y, Gasparrini A, Liu Y, Yue Y, Gu S, Sang S, Luan G, Sun Q, Liu Q (2015b) Cardiovascular mortality risk attributable to ambient temperature in China. Heart 101:1966–1972CrossRefGoogle Scholar
  91. Yang J, Yin P, Zhou M, Ou CQ, Li M, Li J, Liu X, Gao J, Liu Y, Qin R, Xu L, Huang C, Liu Q (2016) The burden of stroke mortality attributable to cold and hot ambient temperatures: epidemiological evidence from China. Environ Int 92-93:232–238CrossRefGoogle Scholar
  92. Ye X, Wolff R, Yu W, Vaneckova P, Pan X, Tong S (2012) Ambient temperature and morbidity: a review of epidemiological evidence. Environ Health Perspect 120:19–28CrossRefGoogle Scholar
  93. Yoon SJ, Oh IH, Seo HY, Kim EJ (2014) Measuring the burden of disease due to climate change and developing a forecast model in South Korea. Public Health 128:725–733CrossRefGoogle Scholar
  94. Zhang Y, Bi P, Hiller JE (2007) Climate change and disability-adjusted life years. J Environ Health 70:32–36Google Scholar
  95. Zhang Y, Bi P, Hiller JE (2012a) Projected burden of disease for salmonella infection due to increased temperature in Australian temperate and subtropical regions. Environ Int 44:26–30CrossRefGoogle Scholar
  96. Zhang Y, Bi P, Sun Y, Hiller JE (2012b) Projected years lost due to disabilities (YLDs) for bacillary dysentery related to increased temperature in temperate and subtropical cities of China. J Environ Monit 14:510–516CrossRefGoogle Scholar
  97. Zhang Y, Feng C, Ma C, Yang P, Tang S, Lau A, Sun W, Wang Q (2015) The impact of temperature and humidity measures on influenza A (H7N9) outbreaks-evidence from China. Int J Infect Dis 30:122–124CrossRefGoogle Scholar
  98. Zhang B, Li G, Ma Y, Pan X (2018a) Projection of temperature-related mortality due to cardiovascular disease in Beijing under different climate change population, and adaptation scenarios. Environ Res 162:152–159CrossRefGoogle Scholar
  99. Zhang Y, Yu C, Peng M, Zhang L (2018b) The burden of ambient temperature on years of life lost: a multi-community analysis in Hubei, China. Sci Total Environ 621:1491–1498CrossRefGoogle Scholar
  100. Zhang Y, Yu Y, Peng M, Meng R, Hu K, Yu C (2018c) Temporal and seasonal variations of mortality burden associated with hourly temperature variability: a nationwide investigation in England and wales. Environ Int 115:325–333CrossRefGoogle Scholar

Copyright information

© ISB 2019

Authors and Affiliations

  • Jian Cheng
    • 1
  • Zhiwei Xu
    • 1
  • Hilary Bambrick
    • 1
  • Hong Su
    • 2
  • Shilu Tong
    • 3
    • 4
    • 5
  • Wenbiao Hu
    • 1
    Email author
  1. 1.School of Public Health and Social Work, Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
  2. 2.Department of Epidemiology and Health Statistics, School of Public HealthAnhui Medical UniversityHefeiChina
  3. 3.Shanghai Children’s Medical CentreShanghai Jiao-Tong UniversityShanghaiChina
  4. 4.School of Public Health, Institute of Environment and Human HealthAnhui Medical UniversityHefeiChina
  5. 5.School of Public Health and Social WorkQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations