Advertisement

International Journal of Biometeorology

, Volume 63, Issue 1, pp 83–92 | Cite as

High biodiversity silvopastoral system as an alternative to improve the thermal environment in the dairy farms

  • Matheus Deniz
  • Abdon L. Schmitt Filho
  • Joshua Farley
  • Sérgio F. de Quadros
  • Maria J. Hötzel
Original Paper
  • 49 Downloads

Abstract

The aim of this work was to evaluate the influence of high biodiversity silvopastoral system (SPSnuclei) on microclimate and thermal comfort index thru a parallel with treeless pasture (TLP) during the four seasons of the year. Three conditions were determined for this study: shadowing area in SPSnuclei, sunny area in SPSnuclei, and sunny area in TLP. During two consecutive days in each season, the following microclimatic variables were collected: air temperature (°C), relative humidity (%), illuminance (lux), wind speed (m/s), and soil surface temperature (°C). The temperature and humidity index (THI) was calculated for each condition as indicative of thermal comfort. An influence analysis was carried out by generalized linear models to evaluate the system effects on the microclimatic variables. A confirmatory analysis was done with Wilcoxon-Mann-Whitney. Systems (SPSnuclei x TLP) influenced the microclimatic variables and THI (p < 0.05). The lowest means of air temperature, illuminance, wind speed, and soil surface temperature were found in SPSnuclei. As expected, autumn and winter presented a comfortable environment even on treeless pastureland. Only the SPSnuclei showed a comfortable environment for dairy production during spring. During summer, the TLP had a microclimate and thermal comfort index not suitable for dairy production already in the first hours of the day (THI between 79 and 85). We concluded that SPSnuclei provided better environment for pasture-based dairy production when compared to TLP. The high THI measured in TLP during summer could be a limiting factor on animal production.

Keywords

Ambience Microclimate Native trees Thermal comfort Tree nuclei Shading 

References

  1. Ana C, Heck AC, Schimitt Filho AL, Joner F, Simioni GF, Sinisgalli PA (2018) Composição e Distribuição de Formigas como Indicador de Qualidade Ambiental na Pecuária a Base de Pasto: Os Sistemas Silvipastoris com Núcleos. Anais do Encontro Sociedade Latino Americana de Agroecologia. http://www.agroecologia2018.com. Accessed 21 April 2018
  2. Ainsworth JAW, Moe SR, Skarpe C (2012) Pasture shade and farm management effects on cow productivity in the tropics. Agric Ecosyst Environ 155:105–110.  https://doi.org/10.1016/j.agee.2012.04.005 CrossRefGoogle Scholar
  3. Alemu MM (2016) Ecological benefits of trees as windbreaks and shelterbelts 6:10–13.  https://doi.org/10.5923/j.ije.20160601.02
  4. Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Zeitschrift 22:711–728.  https://doi.org/10.1127/0941-2948/2013/0507 CrossRefGoogle Scholar
  5. Alves FV, Nicodemo MLF, Porfírio-da-Silva V (2015) Bem-estar animal em Sistema de Integração Lavoura-Pecuária-Floresta. In: Cordeiro LAM, Vilela L, Kluthcouski J, Marchão RL (eds) Integração Lavoura-Pecuária-Floresta: o produtor pergunta, a Embrapa responde. Brasília, Embrapa, pp 274–287Google Scholar
  6. Alvez JP, Schmitt Filho AL, Farley JC, Erickson JD et al (2014) Transition from semi-confinement to pasture-based dairy in Brazil: farmers’ view of economic and environmental performances. Agroecology and Sustainable Food Systems 38:995–1014CrossRefGoogle Scholar
  7. Baccari Júnior F (2001) Manejo ambiental da vaca leiteira em climas quentes. Editora UEL, Londrina, p 142Google Scholar
  8. Baêta FC, Souza CF (1997) Ambiência em edificações rurais - conforto animal. UFV, ViçosaGoogle Scholar
  9. Baêta FC, Souza CF (2010) Ambiência em edificações rurais - conforto animal. UFV, ViçosaGoogle Scholar
  10. Battisti LFZ, Schmitt AL, Loss A, et al (2016) Densidade do solo nos multiplos pontos de sombra do Sistema Voisin Silvipastoril com Núcleos (Voisin SSP+Núcleos). 4th Convención Internacional Agrodesarollo & 11th International Workshop “trees and shrubs in livestock production”. Varadero, CubaGoogle Scholar
  11. Battisti LFZ, Schmitt Filho AL, Loss A, Sinisgalli PA (2018) Soil chemical attributes in a high biodiversity silvopastoral system. Acta Agron. 67 (3) 451–132.  https://doi.org/10.15446/acag.v67n3.70180
  12. Blackshaw JK, Blackshaw AW (1994) Heat stress in cattle and the effect of shade on production and behaviour: a review. Aust J Exp Agric 34:285–295.  https://doi.org/10.1071/EA9940285 CrossRefGoogle Scholar
  13. Bohmanova J, Misztal I, Cole JB (2007) Temperature-humidity indices as indicators of milk production losses due to heat stress. J Dairy Sci 90:1947–1956.  https://doi.org/10.3168/jds.2006-513 CrossRefGoogle Scholar
  14. Bolaños CAD, Pantoja JCF, Alves AC et al (2014) Qualidade do leite de vacas criadas no sistema silvipastoril no vale do Cauca, Colômbia1. Pesqui Vet Bras 34:134–140.  https://doi.org/10.1590/S0100-736X2014000200007 CrossRefGoogle Scholar
  15. Borburema JB, de Souza BB, Cezar MF, Filho JMP (2013) Influência de fatores ambientais sobre a produção e composição físico-química do leite. Agropecuária Científica No Semiárido 9:15–19Google Scholar
  16. Brandle JR, Hodges L, Zhou XH (2004) Windbreaks in north American agricultural systems windbreaks in north American agricultural systems. Agrofor Syst 61:65–78Google Scholar
  17. Broom DM (2017) Components of sustainable animal production and the use of silvopastoral systems. Rev Bras Zootec 46:683–688.  https://doi.org/10.1590/S1806-92902017000800009 CrossRefGoogle Scholar
  18. Broom DM, Galindo FA, Murgueitio E (2013) Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc R Soc B Biol Sci 280:20132025–20132025.  https://doi.org/10.1098/rspb.2013.2025 CrossRefGoogle Scholar
  19. Buratto T, Schmitt Filho, AL, Sinisgalli P, Farley J, (2017) Da produção agroecológica deleite ao Programa de Pagamento para Serviços Ecossistêmicos: a extensão universitária viabilizando a gestão sustentável de agroecossistemas. In anais do II Simpósio Brasileiro de Desenvolvimento Territorial Sustentável SBDTS-UFPR, Matinhos, ParanáGoogle Scholar
  20. Carvalho Filho JLS, Schmitt Filho AL, Fantini AC, Farley J, et al (2016) Matas Ciliares Multifuncionais (MCmult): Quando o agricultor familiar inova na recuperação florestal das áreas ripárias In: 4th Convención Internacional AGRODESARROLLO 2016 & 11th International Workshop ‘Trees and Shrubs in Livestock Production’, Varadero Cuba, 23-30 outubro, 2016. v.1Google Scholar
  21. Ceballos MC, Morales AMT, Rivera JE (2011) Efecto de la temperatura y la humedad ambiental sobre el comportamiento de consumo en sistemas silvopastoriles intensivos y posibles implicaciones en el confort térmico. Revista Colombiana De Ciencias Pecuárias 24:365–368Google Scholar
  22. Collier RJ, Hall LW, Rungruang S, Zimbleman RB (2012) Quantifying heat stress and its impact on metabolism and performance. Dep Anim Sci Univ Arizona:74–84.  https://doi.org/10.1017/S175173111000090X
  23. Corbin JD, Holl KD (2012) Applied nucleation as a forest restoration strategy. For Ecol Manag 265:37–46.  https://doi.org/10.1016/j.foreco.2011.10.013 CrossRefGoogle Scholar
  24. Craesmeyer KC, Schmitt Filho AL, Hotzel MJ, Diniz M, Farley J (2017) Utilização da Sombra por Vacas Lactantes sob Sistema Voisin Silvipastoril no Sul do Brasil. Cadernos de Agroecologia, [S.l.], v. 11, n. 2Google Scholar
  25. Dagang ABK, Nair P (2003) Silvopastoral research and adoption in Central America: recent findings and recommendations for future directions. Agrofor Syst 59:149–155.  https://doi.org/10.1007/BF00115736 CrossRefGoogle Scholar
  26. de Aguiar IS, Baccari Júnior F (2003) Respostas fisiológicas e produção de leite de vacas holandesas mantidas ao sol e com acesso a sombra natural. Rev Cient Eletr Med Vet 1(1): 114–118. http://faef.revista.inf.br/imagens_arquivos/arquivos_destaque/GkGEPa9bT6f3OpK_2013-5-13-17-0-17.pdf. Accessed 21 June 2017
  27. de Andrade Ferrazza R, Mogollón Garcia HD, Vallejo Aristizábal VH et al (2017) Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress. J Therm Biol 66:68–80.  https://doi.org/10.1016/j.jtherbio.2017.03.014 CrossRefGoogle Scholar
  28. de Souza A, Pavão HG, Lastoria G et al (2010) Um estudo de conforto e desconforto térmico para o Mato Grosso do Sul. Rev Estud Ambient 12:15–25Google Scholar
  29. de Souza BB, de Silva GA, da Silva EMN (2016) Índice de conforto térmico para vacas leiteiras em diferentes microrregiões do estado da Paraíba, Brasil. J Anim Behav Biometeorol 4:12–16CrossRefGoogle Scholar
  30. Deniz M, Schmitt Filho AL, Hötzel MJ et al (2018) The influence of tree nucleus on the distribution of cattle in pasture. SOCLA 2017 CAD Agroecol 13:01–04Google Scholar
  31. Equipe Estatcamp (2014) Software Action. Estatcamp - Consultoria em estatística e qualidade. São Carlos - SP, Brasil. URL http://www.portalaction.com.br. Accessed 3 July 2017
  32. Ernesto Méndez V, Bacon CM, Cohen R (2013) Agroecology as a transdisciplinary, participatory, and action-oriented approach. Agroecol Sustain Food Syst 37:3–18.  https://doi.org/10.1080/10440046.2012.736926 Google Scholar
  33. Gill M, Smith P, Wilkinson JM (2010) Mitigating climate change: the role of domestic livestock. Animal 4:323–333.  https://doi.org/10.1017/S1751731109004662 CrossRefGoogle Scholar
  34. Huntsinger L, Sulak A, Standiford R, Campos PP (2004) Conservation “matching funds” from working woodlands in California. Silvopastoralism and Sustainable Land Management 1(1):312–318Google Scholar
  35. INMET (2009) Normais Climatológicas do Brasil, Instituto Nacional de Meteorologia. BRASÍLIA - DFGoogle Scholar
  36. IPCC (2015) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  37. Jeremias V (2012) Success factors and Constrains of Community based Ecosystem Management: a case study of the voisin rotation grazing system in a rural community in Brazil. Master of Science Thesis in Environmental Systems Analysis, Wageningen University and Research Centre, The NetherlandsGoogle Scholar
  38. Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10.  https://doi.org/10.1007/s10457-009-9229-7 CrossRefGoogle Scholar
  39. Joseph L, Schmitt AL, Fantini AC, et al (2016) O potencial da produção de leite a base de pasto em Sistema Voisin de acordo com os produtores familiares da Capital Catarinense da Agroecologia. 4th Convención Internacional Agrodesarollo & 11th International Workshop “Trees and Shrubs in Livestock Production”. Varadero, CubaGoogle Scholar
  40. Junior NK, Alves FV, Klosowski ES, et al (2016) Microclima e índices de conforto térmico em sistemas de integração lavoura-pecuária-floresta no município de Campo Grande, Mato Grosso do Sul. Embrapa Gado Corte DOC 225:38.  https://doi.org/10.13140/RG.2.2.33155.91685
  41. Karvatte N, Klosowski ES, de Almeida RG et al (2016) Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest. Int J Biometeorol 60:1933–1941.  https://doi.org/10.1007/s00484-016-1180-5 CrossRefGoogle Scholar
  42. Kastner T, Rivas MJI, Koch W, Nonhebel S (2012) Global changes in diets and the consequences for land requirements for food. Proc Natl Acad Sci 109:6868–6872.  https://doi.org/10.1073/pnas.1117054109 CrossRefGoogle Scholar
  43. Kazama R, Roma CF da C, Barbosa OR, et al.(2008) Orientação e sombreamento do confinamento na temperaturada superfície do pelame de bovinos. Acta Sci Anim Sci 30:211–216.  https://doi.org/10.4025/actascianimsci.v30i2.4702
  44. LeRoy HG, John BG, Terry LM, Roger AE (2009) Chapter 5: thermal indices and their applications for livestock environments. Livest Energ Therm Environ Manag 113–130.  https://doi.org/10.13031/2013.28298
  45. Luz AMRD (2005) Comportamento dos gases. In:______Curso de Física. Vol. 2, São Paulo, Brazil: Scipione, cap. 11Google Scholar
  46. Macedo RC, Schmitt Filho AL, Farley J, Fantini AC, Cazella AA, Sinisgalli P (2018) Land use and land cover mapping in detailed scale: a case study in Santa Rosa de Lima-SC. Boletim de Ciências Geodésicas, 24(2): 217–234.  https://doi.org/10.1590/S1982-21702018000200015
  47. Méndez VE, Caswell M, Gliessman SR, Cohen R (2017) Integrating agroecology and participatory action research (PAR): lessons from Central America. Sustain 9:1–19.  https://doi.org/10.3390/su9050705 CrossRefGoogle Scholar
  48. Mora J, Ibrarim M, Cruz J, Casasola F, Rosales M, Holguin VA (2004) Preliminary analyses of the impact of payment for environmental services on land use changes: a case study on livestock farms in Costa Rica. Silvo Sust Land Manag 1 (1):335–342Google Scholar
  49. Murphy W (1998) Greener pasture on your side of the fence: Better farming with Voising Management Intensive Grazing. 4th Edition, Colchester Vermont: Arriba PublishingGoogle Scholar
  50. Nascimento ST, Rossetto YP, Silva AA et al (2017) Influência da temperatura ambiente no verão na produção de leite de vacas holandesas. PubVet 11:217–223. https://doi.org/10.22256/PUBVET.V11N3.217-223InfluênciaGoogle Scholar
  51. National Weather Service (1976) Central Region. Livestock Hot Weather Stress. Regional Operations Manual Letter, C-31-76. National Academy Press, Washington, D.CGoogle Scholar
  52. Nelson GC, Valin H, Sands RD et al (2014) Climate change effects on agriculture: economic responses to biophysical shocks. Proc Natl Acad Sci 111:3274–3279.  https://doi.org/10.1073/pnas.1222465110 CrossRefGoogle Scholar
  53. Nicodemo MLF, Silva VP da, de S.Thiago LRL, et al. (2004) Sistemas silvipastoris - introducao de arvores na pecuaria do Centro Oeste brasileiro. Empresa Brasilelira de Pesquisa Agropecuaria-EMBRAPA. file:///C:/Users/User/Downloads/Sistemas-silvipastorisintroduzido.pdf. Accessed 29 August 2017Google Scholar
  54. Oliveira CC, Alves FV, de Almeida RG, et al (2017) Thermal comfort indices assessed in integrated production systems in the Brazilian savannah. Agrofor Syst 1–8.  https://doi.org/10.1007/s10457-017-0114-5
  55. Paciullo DSC, Pires MFA, Aroeira LJM et al (2014) Sward characteristics and performance of dairy cows in organic grass-legume pastures shaded by tropical trees. Animal 8:1264–1271.  https://doi.org/10.1017/S1751731114000767 CrossRefGoogle Scholar
  56. Reis A, Bechara FC, De Espíndola MB et al (2003) Restauração de áreas degradadas : a nucleação como base para incrementar os processos sucessionais. Nat Conserv 1:28–36Google Scholar
  57. Rhoads ML, Rhoads RP, VanBaale MJ et al (2009) Effects of heat stress and plane of nutrition on lactating Holstein cows: I. production, metabolism, and aspects of circulating somatotropin. J Dairy Sci 92:1986–1997.  https://doi.org/10.3168/jds.2008-1641 CrossRefGoogle Scholar
  58. Rodrigues-Luego Y, Campos-Palacin P, Ovando-Pol P (2004) Comparative analysis of the EAA/EAF and AAS agroforestry accounting systems: application to a dehesa estate. Silvopastoralism and Sustainable Land Management 1(1):330–334Google Scholar
  59. Rosenberg LJ, Biad BL, Verns SB (1983) Human and animal biometeorology. In: Microclimate, the biological environment. New York: Wiley- Interscience Publication p.423–467Google Scholar
  60. Sanin LY, Cabrera AMZ, Morales AMT (2016) Adaptive responses to thermal stress in mammals. Rev Med Vet (Bogota) 31:121–135Google Scholar
  61. Schmitt AL, Farley J, (2017) Co-investment in agroecology for ecosystems services in Santa Rosa de Lima, Brazil. 9th Biennal Conference of United States Society for Ecological Economics USSEE. Minnesota USAGoogle Scholar
  62. Schmitt AL, Farley J, Alarcon GG, et al (2013) Integrating agroecology with payments for ecosystem services in Santa Catarina’s Atlantic Forest. In: Gov. Prov. Ecosys. Serv.333–355.  https://doi.org/10.1007/978-94-007-5176-7_17
  63. Schmitt AL, Fantini AC, Farley J, et al (2017) Nucleation theory inspiring the design of high biodiversity silvopastoral system in the Atlantic Forest biome: ecological restoration, family farm livelihood and agroecology. VII World Conference on Ecological Restorarion – SER, Foz do Iguaço BRGoogle Scholar
  64. Schröter B, Matzdorf B, Sattler C, Garcia Alarcon G (2015) Intermediaries to foster the implementation of innovative land management practice for ecosystem service provision - a new role for researchers. Ecosyst Serv 16:192–200.  https://doi.org/10.1016/j.ecoser.2015.10.007 CrossRefGoogle Scholar
  65. Silva AA, Schmitt AL, Fantini AC, et al (2016) Determinação da biomassa e estoque de carbono em Sistema Voisin Silvipastoril com Núcleos (VoisinSSP+Núcleos). 4th Convención Internacional Agrodesarollo & 11th International Workshop “Trees and Shrubs in Livestock Production”. Varadero, CubaGoogle Scholar
  66. Silva AA, Schmitt Filho AL, Fantini AC, Zambiazi DC, Sinisgalli PA (2018) Estimativas de biomassa e carbono em sistema silvipastoril com núcleos arbóreos (PRVnúcleos). Cadernos de Agroecologia, v.13, n.1. http://cadernos.aba-agroecologia.org.br/index.php/cadernos/article/view/1742. Accessed 21 April 2018
  67. Simioni GF, Schmitt Filho, AL, Fantini AC, Moreira APT, et al (2016) Monitoramento bioacústico automatizado da avifauna em sistema Voisin silvipastoril com núcleos (PRVSnúcleo) no Brasil. In: 4th Convención Internacional Agrodesarrollo 2016 & 11th International Workshop ‘Trees and Shrubs in Livestock Production’, Varadero, Cuba, 23-30 outubro, 2016. v.1Google Scholar
  68. Solorio FJ, Basu SK, Ayala A, et al (2016) The potential of silvopastoral systems for milk and meat organic production in the tropics. In: Nandwani D (eds) Organic farming for sustainable agriculture. Sustainable development and biodiversity 09.  https://doi.org/10.1007/978-3-319-26803-3_8
  69. Sousa LF, Mauricio RM, Gonçalves LC et al (2007) Produtividade e valor nutritivo da Brachiaria brizantha cv. Marandu em um Sistema Silvipastoril Arq Bras Med Vet e Zootec 59:1029–1037.  https://doi.org/10.1590/S0102-09352007000400032 CrossRefGoogle Scholar
  70. Thom EC 1959 The discomfort index. Weatherwise 12, 57–59. https://www.tandfonline.com/doi/abs/10.1080/00431672.1959.9926960?journalCode=vwws20. Accessed 18 June 2017
  71. Thornton PK, van de Steeg J, Notenbaert A, Herrero M (2009) The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric Syst 101:113–127.  https://doi.org/10.1016/j.agsy.2009.05.002 CrossRefGoogle Scholar
  72. West JW (2003) Effects of heat-stress on production in dairy cattle. J Dairy Sci 86:2131–2144.  https://doi.org/10.3168/jds.S0022-0302(03)73803-X CrossRefGoogle Scholar
  73. Wilhelm LR (1976) Numerical calculation of psychrometric properties in SI units. Trans ASAE 8:318–325.  https://doi.org/10.13031/2013.36019 CrossRefGoogle Scholar

Copyright information

© ISB 2018

Authors and Affiliations

  1. 1.Silvopastoral Systems and Ecological Restoration Laboratory - LASSre, Department of Animal Science and Rural DevelopmentFederal University of Santa Catarina – UFSCFlorianópolisBrazil
  2. 2.Gund Institute for EnvironmentUniversity of VermontBurlingtonUSA
  3. 3.Department of Community Development and Applied Economics – CDAEUniversity of Vermont – UVMBurlingtonUSA

Personalised recommendations