Advertisement

International Journal of Biometeorology

, Volume 62, Issue 6, pp 1109–1113 | Cite as

Pan European Phenological database (PEP725): a single point of access for European data

  • Barbara Templ
  • Elisabeth Koch
  • Kjell Bolmgren
  • Markus Ungersböck
  • Anita Paul
  • Helfried Scheifinger
  • This Rutishauser
  • Montserrat Busto
  • Frank-M. Chmielewski
  • Lenka Hájková
  • Sabina Hodzić
  • Frank Kaspar
  • Barbara Pietragalla
  • Ramiro Romero-Fresneda
  • Anne Tolvanen
  • Višnja Vučetič
  • Kirsten Zimmermann
  • Ana Zust
Short Communication

Abstract

The Pan European Phenology (PEP) project is a European infrastructure to promote and facilitate phenological research, education, and environmental monitoring. The main objective is to maintain and develop a Pan European Phenological database (PEP725) with an open, unrestricted data access for science and education. PEP725 is the successor of the database developed through the COST action 725 “Establishing a European phenological data platform for climatological applications” working as a single access point for European-wide plant phenological data. So far, 32 European meteorological services and project partners from across Europe have joined and supplied data collected by volunteers from 1868 to the present for the PEP725 database. Most of the partners actively provide data on a regular basis. The database presently holds almost 12 million records, about 46 growing stages and 265 plant species (including cultivars), and can be accessed via http://www.pep725.eu/. Users of the PEP725 database have studied a diversity of topics ranging from climate change impact, plant physiological question, phenological modeling, and remote sensing of vegetation to ecosystem productivity.

Keywords

Plant phenology Europe Long-term data Climate change Citizen science 

Notes

Acknowledgements

We thank the Zentralanstalt für Meteorologie und Geodynamik (ZAMG, Austria) for providing the infrastructure to store the growing number of data from Europe. Special thanks go to the Austrian Federal Ministry of Science, Research and Economy and to EUMETNET, and to all the institutes and scientists who provided data to the PEP725 database. Finally, we would like to emphasize our gratefulness to those data contributors who did not participate as authors in the writing of this manuscript: I. Chuine (French National Centre for Scientific Research, France), A. Donnelly (University of Wisconsin-Milwaukee, USA), G. Demaree (Royal Meteorological Institute of Belgium, Belgium), R. Gehrig (MeteoSwiss, Switzerland), O. Langvall (Swedish National Phenology Network, Sweden), K-K. Malgorzata (Institute of Meteorology and Water Management, Poland), E. Mateescu (National Meteorological Administration, Romania), G. dal Monte (Royal Meteorological Institute of Belgium, Italy), A. NiBhroin (Met Éireann, Ireland), T. Popovic (Institute of Hydrometeorology and Seismology of Montenegro), Z. Snopkova (Slovak Hydrometeorological Institute), S. Stevkova (Hydrometeorological Service of Republic of Macedonia), E. Vincze (Hungarian Meteorological Service), A. van Vliet (Wageningen University, The Netherlands), F.-E. Wielgolaski (The Norwegian Meteorological Institute, Norway).

Supplementary material

484_2018_1512_MOESM1_ESM.pdf (244 kb)
ESM 1 (PDF 244 kb)

References

  1. Basler D (2016) Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric For Meteorol 217:10–21CrossRefGoogle Scholar
  2. Bussel LGJ, Stehfest E, Siebert S, Müller C, Ewert F (2015) Simulation of the phenological development of wheat and maize at the global scale. Glob Ecol Biogeogr 24(9):1018–1029CrossRefGoogle Scholar
  3. Chen M, Melaas EK, Gray JM, Friedl MA, Richardson AD (2016) A new seasonal-deciduous spring phenology submodel in the Community Land Model 4.5: impacts on carbon and water cycling under future climate scenarios. Glob Chang Biol 22(11):3675–3688CrossRefGoogle Scholar
  4. Cook BI, Wolkovich EM, Davies TJ, Ault TR, Betancourt JL, Allen JM, Bolmgren K, Cleland EE, Crimmins TM, Kraft NJ, Lancaster LT (2012) Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases. Ecosystems 15(8):1283–1294CrossRefGoogle Scholar
  5. Crabbe RA, Dash J, Rodriguez-Galiano VF, Janous D, Pavelka M, Marek MV (2016) Extreme warm temperatures alter forest phenology and productivity in Europe. Sci Total Environ 563:486–495CrossRefGoogle Scholar
  6. Delpierre N, Guillemot J, Dufrêne E, Cecchini S, Nicolas M (2017) Tree phenological ranks repeat from year to year and correlate with growth in temperate deciduous forests. Agric For Meteorol 234:1–10CrossRefGoogle Scholar
  7. Dierenbach J, Badeck F-W, Schaber J (2013) The plant phenological online database (PPODB): an online database for long-term phenological data. Int J Biometeorol 57:805–812CrossRefGoogle Scholar
  8. Demaree GR, Rutishauser T (2011) From “periodical observations” to “anthochronology” and “phenology”—the scienctific debate between Adolphe Quetelet and Charles Morren on the origin of the word “phenology”. Int J Biometeorol 55:753–761CrossRefGoogle Scholar
  9. Duputié A, Rutschmann A, Ronce O, Chuine I (2015) Phenological plasticity will not help all species adapt to climate change. Glob Chang Biol 21(8):3062–3073CrossRefGoogle Scholar
  10. Fitter AH, Fitter RSR, Harris ITB, Williamson MH (1995) Relationship between 1st flowering date and temperature in the flora of a locality in Central England. Funct Ecol 9:55–60CrossRefGoogle Scholar
  11. Fu YH, Piao S, Op de Beeck M, Cong N, Zhao H, Zhang Y, Menzel A, Janssens IA (2014a) Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob Ecol Biogeogr 23:1255–1263CrossRefGoogle Scholar
  12. Fu YS, Campioli M, Vitasse Y, De Boeck HJ, Van den Berge J, Abdelgawad H, Asard H, Piao S, Deckmyn G, Janssens IA (2014b) Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc Natl Acad Sci U S A 111(20):7355–7360CrossRefGoogle Scholar
  13. Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñuelas J, Song Y (2015a) Declining global warming effects on the phenology of spring leaf unfolding. Nature 526:104–107CrossRefGoogle Scholar
  14. Fu YH, Piao S, Vitasse Y, Zhao H, De Boeck HJ, Liu Q, Yang H, Weber U, Hänninen H, Janssens IA (2015b) Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: effects of chilling, precipitation and insolation. Glob Chang Biol 21(7):2687–2697CrossRefGoogle Scholar
  15. Fraga H, García de Cortázar Atauri I, Malheiro AC, Santos JA (2016) Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob Chang Biol 22(11):3774–3788CrossRefGoogle Scholar
  16. Gonsamo A, Chen JM (2016) Circumpolar vegetation dynamics product for global change study. Remote Sens Environ 182:13–26CrossRefGoogle Scholar
  17. Guan BT (2014) Ensemble empirical mode decomposition for analyzing phenological responses to warming. Agric For Meteorol 194:1–7CrossRefGoogle Scholar
  18. Hamunyela E, Verbesselt J, Roerink G, Herold M (2013) Trends in spring phenology of western European deciduous forests. Remote Sens 5(12):6159–6179CrossRefGoogle Scholar
  19. Jochner S, Sparks TH, Laube J, Menzel A (2016) Can we detect a nonlinear response to temperature in European plant phenology? Int J Biometeorol 60:1551–1561CrossRefGoogle Scholar
  20. Jurkovic A, Hubner T, Koch E, Lipa W, Scheifinger H, Ungersbuck M, Zach-Hermann S (2013) The Pan European Phenological database PEP725: data content and quality. EUMETNET 9th Data management Workshop, 5-8 November. El Escorial, SpainGoogle Scholar
  21. Koch E, Bruns E, Chmielewski FM, Defila C, Lipa W, Menzel A (2009) Guidelines for plant phenological observations. WMO/TD No. 1484. World Meteorological Organization, GenevaGoogle Scholar
  22. Lapenis A, Henry H, Vuille M, Mower J (2014) Climatic factors controlling plant sensitivity to warming. Clim Chang 122:723–734CrossRefGoogle Scholar
  23. Linnaeus C (1751) Philosophia Botanica. (English translation by Stephen Freer). Oxford University Press, Stockholm, AmsterdamGoogle Scholar
  24. Linnaeus C, Bark H (1753) Vernatio arborum. UppsalaGoogle Scholar
  25. Martínez-Lüscher J, Kizildeniz T, Vučetić V, Dai Z, Luedeling E, van Leeuwen C, Gomès E, Pascual I, Irigoyen JJ, Morales F Delrot S (2016) Sensitivity of grapevine phenology to water availability, temperature and Co2 concentration. Front Environ Sci 4:48.  https://doi.org/10.3389/fenvs.2016.00048
  26. Meier U (1997) BBCH-monograph: growth stages of mono- and dicotyledonous plants. Blackwell Wissenschafts-Verlag, BerlinGoogle Scholar
  27. Mellert KH, Lenoir J, Winter S, Kölling C, Čarni A, Dorado-Liñán I, Gégout JC, Göttlein A, Hornstein D, Jantsch M, Juvan N (2017) Soil water storage appears to compensate for climatic aridity at the xeric margin of European tree species distribution. Eur J For Res 1–14.  https://doi.org/10.1007/s10342-017-1092-x
  28. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659CrossRefGoogle Scholar
  29. Menzel A, Sparks T, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976CrossRefGoogle Scholar
  30. Olsson C, Jönsson AM (2014) Process based models not always better than empirical models for simulating budburst of Norway spruce and birch in Europe. Glob Chang Biol 20(11):3492–3507CrossRefGoogle Scholar
  31. Nekovář J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski FE (2008) COST Action 725—the history and current status of plant phenology in Europe. COST Office, BrusselsGoogle Scholar
  32. Piao S, Tan J, Chen A, Fu YH, Ciais P, Liu Q, Janssens IA, Vicca S, Zeng Z, Jeong SJ, Li Y (2015) Leaf onset in the northern hemisphere triggered by daytime temperature. Nat Commun 6:6911.  https://doi.org/10.1038/ncomms7911 CrossRefGoogle Scholar
  33. Puppi G (2007) Origin and development of phenology as a science. Ital J Agron 3:24–29Google Scholar
  34. Rodriguez-Galiano VF, Dash J, Atkinson PM (2015) Intercomparison of satellite sensor land surface phenology and ground phenology in Europe. Geophys Res Lett 42:2253–2260CrossRefGoogle Scholar
  35. Sakalli A, Simpson D (2012) Towards the use of dynamic growing seasons in a chemical transport model. Biogeosciences 9(12):5161–5179CrossRefGoogle Scholar
  36. Scheifinger H, Templ B (2016) Is citizen science the recipe for the survival of paper-based phenological networks in Europe? Bioscience 66:533–534CrossRefGoogle Scholar
  37. Schwartz MD (1998) Green-wave phenology. Nature 394:839–840CrossRefGoogle Scholar
  38. Sobrino JA, Julien Y, Sòria G (2013) Phenology estimation from Meteosat second generation data. IEEE J Sel Topics Appl Earth Observ Remote Sens 6:1653–1659CrossRefGoogle Scholar
  39. Tang J, Körner C, Muraoka H, Piao S, Shen M, Thackeray SJ, Yang X (2016) Emerging opportunities and challenges in phenology: a review. Ecosphere 7:e01436CrossRefGoogle Scholar
  40. Verger A, Filella I, Baret F, Peñuelas J (2016) Vegetation baseline phenology from kilometric global LAI satellite products. Remote Sens Environ 178:1–14CrossRefGoogle Scholar
  41. Vitasse Y, Basler D (2013) What role for photoperiod in the bud burst phenology of European beech. Eur J For Res 132:1–8CrossRefGoogle Scholar
  42. Wang T, Ottlé C, Peng S, Janssens IA, Lin X, Poulter B, Yue C, Ciais P (2014) The influence of local spring temperature variance on temperature sensitivity of spring phenology. Glob Chang Biol 20:1473–1480CrossRefGoogle Scholar
  43. Wang C, Tang Y, Chen J (2016) Plant phenological synchrony increases under rapid within-spring warming. Sci Rep 6:25460.  https://doi.org/10.1038/srep25460
  44. Wang H, Rutishauser T, Tao Z, Zhong S, Ge Q, Dai J (2017) Impacts of global warming on phenology of spring leaf unfolding remain stable in the long run. Int J Biometeorol 61:287–292CrossRefGoogle Scholar
  45. Zust A, Susnik A, Habic B (2006) Data quality control procedures within the common European phenological data platform COST 725. Proceedings of the EMS-Sixth European Conference on Applied Climatology ECAC 2006, 4–8 September, Ljubljana, SloveniaGoogle Scholar

Copyright information

© ISB 2018

Authors and Affiliations

  • Barbara Templ
    • 1
  • Elisabeth Koch
    • 1
  • Kjell Bolmgren
    • 2
  • Markus Ungersböck
    • 1
  • Anita Paul
    • 1
  • Helfried Scheifinger
    • 1
  • This Rutishauser
    • 3
  • Montserrat Busto
    • 4
  • Frank-M. Chmielewski
    • 5
  • Lenka Hájková
    • 6
  • Sabina Hodzić
    • 7
  • Frank Kaspar
    • 8
  • Barbara Pietragalla
    • 9
  • Ramiro Romero-Fresneda
    • 10
  • Anne Tolvanen
    • 11
    • 12
  • Višnja Vučetič
    • 13
  • Kirsten Zimmermann
    • 8
  • Ana Zust
    • 14
  1. 1.Zentralanstalt für Meteorologie und GeodynamikViennaAustria
  2. 2.Swedish University of Agricultural SciencesUppsalaSweden
  3. 3.Swiss Academy of Arts and SciencesBernSwitzerland
  4. 4.Meteorological Service of CataloniaBarcelonaSpain
  5. 5.International Phenological GardensHumboldt University of BerlinBerlinGermany
  6. 6.Czech Hydrometeorological InstitutePragueCzech Republic
  7. 7.Federal Hydrometeorological Institute of Bosnia and HerzegovinaSarajevoBosnia and Herzegovina
  8. 8.Deutscher WetterdienstOffenbachGermany
  9. 9.MeteoSwissZurichSwitzerland
  10. 10.Agencia Estatal de MeteorologiaMadridSpain
  11. 11.Natural Resources Institute FinlandOuluFinland
  12. 12.University of OuluOuluFinland
  13. 13.Meteorological and Hydrological Service of CroatiaZagrebCroatia
  14. 14.Slovenian Environmental Agency, Meteorological OfficeLjubljanaSlovenia

Personalised recommendations