Advertisement

International Journal of Biometeorology

, Volume 61, Issue 8, pp 1433–1444 | Cite as

Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland

  • Nan Cong
  • Miaogen ShenEmail author
  • Wei Yang
  • Zhiyong Yang
  • Gengxin Zhang
  • Shilong Piao
Original Paper

Abstract

Vegetation activity on the Tibetan Plateau grassland has been substantially enhanced as a result of climate change, as revealed by satellite observations of vegetation greenness (i.e., the normalized difference vegetation index, NDVI). However, little is known about the temporal variations in the relationships between NDVI and temperature and precipitation, and understanding this is essential for predicting how future climate change would affect vegetation activity. Using NDVI data and meteorological records from 1982 to 2011, we found that the inter-annual partial correlation coefficient between growing season (May–September) NDVI and temperature (RNDVI-T) in a 15-year moving window for alpine meadow showed little change, likely caused by the increasing RNDVI-T in spring (May–June) and autumn (September) and decreasing RNDVI-T in summer (July–August). Growing season RNDVI-T for alpine steppe increased slightly, mainly due to increasing RNDVI-T in spring and autumn. The partial correlation coefficient between growing season NDVI and precipitation (RNDVI-P) for alpine meadow increased slightly, mainly in spring and summer, and RNDVI-P for alpine steppe increased, mainly in spring. Moreover, RNDVI-T for the growing season was significantly higher in those 15-year windows with more precipitation for alpine steppe. RNDVI-P for the growing season was significantly higher in those 15-year windows with higher temperature, and this tendency was stronger for alpine meadow than for alpine steppe. These results indicate that the impact of warming on vegetation activity of Tibetan Plateau grassland is more positive (or less negative) during periods with more precipitation and that the impact of increasing precipitation is more positive (or less negative) during periods with higher temperature. Such positive effects of the interactions between temperature and precipitation indicate that the projected warmer and wetter future climate will enhance vegetation activity of Tibetan Plateau grassland.

Keywords

Alpine grassland Climate change Interaction Precipitation Temperature Vegetation activity Tibetan Plateau 

Notes

Acknowledgements

This work was funded by a National Basic Research Program of China (Grant No. 2013CB956303), a Key research program of frontier science (Grant No. QYZDB-SSW-DQC025) of the Chinese Academy of Sciences, grants from the National Natural Science Foundation of China (No. 41501103 and 41571103), the ‘Strategic Priority Research Program (B)’ (Grant No. XDB03030404), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2015055), and the CEReS Overseas Joint Research Program, Center for Environmental Remote Sensing, Chiba University (CI16-101).

Supplementary material

484_2017_1321_MOESM1_ESM.pptx (978 kb)
ESM 1 (PPTX 977 kb)

References

  1. Chen B, Zhang X, Tao J, Wu J, Wang J, Shi P, Zhang Y, Yu C (2014) The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric For Meteorol 189–190:11–18. doi: 10.1016/j.agrformet.2014.01.002 CrossRefGoogle Scholar
  2. Chen H, Zhu QA, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH (2013) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Chang Biol 19(10):2940–2955. doi: 10.1111/gcb.12277 CrossRefGoogle Scholar
  3. Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res 112(F02):F02S03. doi: 10.1029/2006JF000631 Google Scholar
  4. Chu D, Lu L, Zhang T (2007) Sensitivity of normalized difference vegetation index (NDVI) to seasonal and interannual climate conditions in the Lhasa area, Tibetan plateau, China. Arct Antarct Alp Res 39(4):635–641. doi: 10.1657/1523-0430(07-501)%5Bchu%5D2.0.co;2
  5. Cui XF, Graf HF (2009) Recent land cover changes on the Tibetan Plateau: a review. Clim Chang 94(1–2):47–61. doi: 10.1007/s10584-009-9556-8 CrossRefGoogle Scholar
  6. Editorial-Board-of-Vegetation-Map-of-China (2001) 1:1000,000 vegetation atlas of China. Science Press, BeijingGoogle Scholar
  7. Gao H, Yang S (2009) A severe drought event in northern China in winter 2008–2009 and the possible influences of La Niña and Tibetan Plateau. J Geophys Res 114 (D24). doi: 10.1029/2009jd012430
  8. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48 (4). doi: 10.1029/2010rg000345
  9. Hu MQ, Mao F, Sun H, Hou YY (2011) Study of normalized difference vegetation index variation and its correlation with climate factors in the three-river-source region. Int J Appl Earth Obs Geoinf 13(1):24–33. doi: 10.1016/j.jag.2010.06.003 CrossRefGoogle Scholar
  10. Jeong S-J, Ho C-H, Gim H-J, Brown ME (2011) Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Glob Chang Biol 17(7):2385–2399. doi: 10.1111/j.1365-2486.2011.02397.x CrossRefGoogle Scholar
  11. Jin HJ, He RX, Cheng GD, Wu QB, Wang SL, Lu LZ, Chang XL (2009) Changes in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environ Res Lett 4(4):045206. doi: 10.1088/1748-9326/4/4/045206 CrossRefGoogle Scholar
  12. Kato T, Tang YH, Gu S, Hirota M, Du MY, Li YN, Zhao XQ (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Glob Chang Biol 12(7):1285–1298CrossRefGoogle Scholar
  13. Klein JA, Harte J, Zhao X-Q (2007) Experimental warming, not grazing, decreases rangeland quality on the Tibetan plateau. Ecol Appl 17(2):541–557CrossRefGoogle Scholar
  14. Li XW, Li MD, Dong SK, Shi JB (2015) Temporal-spatial changes in ecosystem services and implications for the conservation of alpine rangelands on the Qinghai-Tibetan Plateau. Rangel J 37(1):31–43. doi: 10.1071/rj14084 CrossRefGoogle Scholar
  15. Lu C, Tian H, Liu M, Ren W, Xu X, Chen G, Zhang C (2012) Effect of nitrogen deposition on China’s terrestrial carbon uptake in the context of multifactor environmental changes. Ecol Appl 22(1):53–75CrossRefGoogle Scholar
  16. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  17. Mohammat A, Wang XH, Xu XT, Peng LQ, Yang Y, Zhang XP, Myneni RB, Piao SL (2013) Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agric For Meteorol 178:21–30. doi: 10.1016/j.agrformet.2012.09.014 CrossRefGoogle Scholar
  18. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386(6626):698–702. doi: 10.1038/386698a0 CrossRefGoogle Scholar
  19. Piao S, Fang J, He J (2006) Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Clim Chang 74(1–3):253–267. doi: 10.1007/s10584-005-6339-8 CrossRefGoogle Scholar
  20. Piao SL, Nan HJ, Huntingford C, Ciais P, Friedlingstein P, Sitch S, Peng SS, Ahlstrom A, Canadell JG, Cong N, Levis S, Levy PE, Liu LL, Lomas MR, Mao JF, Myneni RB, Peylin P, Poulter B, Shi XY, Yin GD, Viovy N, Wang T, Wang XH, Zaehle S, Zeng N, Zeng ZZ, Chen AP (2014) Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat Commun 5. doi: 10.1038/ncomms6018
  21. Piao S, Tan K, Nan H, Ciais P, Fang J, Wang T, Vuichard N, Zhu B (2012) Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai–Tibetan grasslands over the past five decades. Glob Planet Chang 98-99:73–80. doi: 10.1016/j.gloplacha.2012.08.009 CrossRefGoogle Scholar
  22. Pinzon J, Tucker C (2014) A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens 6(8):6929–6960. doi: 10.3390/rs6086929 CrossRefGoogle Scholar
  23. Shen M, Cong N, Cao R (2015a) Temperature sensitivity as an explanation of the latitudinal pattern of green-up date trend in Northern Hemisphere vegetation during 1982-2008. Int J Climatol 35(12):3707–3712. doi: 10.1002/joc.4227 CrossRefGoogle Scholar
  24. Shen XJ, Liu BH, Li GD, Zhou DW (2015d) Impact of climate change on temperate and alpine grasslands in China during 1982–2006. Adv Meteorol. doi: 10.1155/2015/180614 Google Scholar
  25. Shen M, Piao S, Cong N, Zhang G, Jassens IA (2015b) Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob Chang Biol 21(10):3647–3656. doi: 10.1111/gcb.12961 CrossRefGoogle Scholar
  26. Shen M, Piao S, Jeong SJ, Zhou L, Zeng Z, Ciais P, Chen D, Huang M, Jin CS, Li LZ, Li Y, Myneni RB, Yang K, Zhang G, Zhang Y, Yao T (2015c) Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences USA 112(30):9299–9304. doi: 10.1073/pnas.1504418112 CrossRefGoogle Scholar
  27. Shen MG, Tang YH, Chen J, Yang W (2012) Specification of thermal growing season in temperate China from 1960 to 2009. Clim Chang 114(3–4):783–798. doi: 10.1007/s10584-012-0434-4 CrossRefGoogle Scholar
  28. Shen M, Tang Y, Chen J, Yang X, Wang C, Cui X, Yang Y, Han L, Li L, Du J, Zhang G, Cong N (2014a) Earlier-season vegetation has greater temperature sensitivity of spring phenology in Northern Hemisphere. PLoS One 9(2):e88178. doi: 10.1371/journal.pone.0088178 CrossRefGoogle Scholar
  29. Shen M, Tang Y, Chen J, Zhu X, Zheng Y (2011) Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric For Meteorol 151(12):1711–1722. doi: 10.1016/j.agrformet.2011.07.003 CrossRefGoogle Scholar
  30. Shen M, Tang Y, Klein J, Zhang P, Gu S, Shimono A, Chen J (2008) Estimation of aboveground biomass using in situ hyperspectral measurements in five major grassland ecosystems on the Tibetan Plateau. J Plant Ecol 1(4):247–257. doi: 10.1093/jpe/rtn025 CrossRefGoogle Scholar
  31. Shen MG, Zhang GX, Cong N, Wang SP, Kong WD, Piao SL (2014b) Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau. Agric For Meteorol 189:71–80. doi: 10.1016/j.agrformet.2014.01.003 CrossRefGoogle Scholar
  32. Su F, Duan X, Chen D, Hao Z, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26(10):3187–3208. doi: 10.1175/jcli-d-12-00321.1 CrossRefGoogle Scholar
  33. Tao J, Zhang Y, Dong J, Fu Y, Zhu J, Zhang G, Jiang Y, Tian L, Zhang X, Zhang T, Xi Y (2015) Elevation-dependent relationships between climate change and grassland vegetation variation across the Qinghai-Xizang Plateau. Int J Climatol 35(7):1638–1647. doi: 10.1002/joc.4082 CrossRefGoogle Scholar
  34. Tucker CJ, Fung IY, Keeling CD, Gammon RH (1986) Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature 319(6050):195–199. doi: 10.1038/319195a0 CrossRefGoogle Scholar
  35. Tucker C, Pinzon J, Brown M, Slayback D, Pak E, Mahoney R, Vermote E, El Saleous N (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26(20):4485–4498. doi: 10.1080/01431160500168686 CrossRefGoogle Scholar
  36. Wang CZ, Guo HD, Zhang L, Liu SY, Qiu YB, Sun ZC (2015a) Assessing phenological change and climatic control of alpine grasslands in the Tibetan Plateau with MODIS time series. Int J Biometeorol 59(1):11–23. doi: 10.1007/s00484-014-0817-5 CrossRefGoogle Scholar
  37. Wang H, Liu D, Lin H, Montenegro A, Zhu X (2015b) NDVI and vegetation phenology dynamics under the influence of sunshine duration on the Tibetan plateau. Int J Climatol 35(5):687–698. doi: 10.1002/joc.4013 CrossRefGoogle Scholar
  38. Wang S, Duan J, Xu G, Wang Y, Zhang Z, Rui Y, Luo C, Xu B, Zhu X, Chang X, Cui X, Niu H, Zhao X, Wang W (2012) Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology 93(11):2365–2376CrossRefGoogle Scholar
  39. Wu G, Duan A, Liu Y, Mao J, Ren R, Bao Q, He B, Liu B, Hu W (2015) Tibetan plateau climate dynamics: recent research progress and outlook. National Science Review 2(1):100–116. doi: 10.1093/nsr/nwu045 CrossRefGoogle Scholar
  40. Xu WX, Gu S, Zhao XQ, Xiao JS, Tang YH, Fang JY, Zhang J, Jiang S (2011) High positive correlation between soil temperature and NDVI from 1982 to 2006 in alpine meadow of the Three-River Source Region on the Qinghai-Tibetan Plateau. Int J Appl Earth Obs Geoinf 13(4):528–535. doi: 10.1016/j.jag.2011.02.001 CrossRefGoogle Scholar
  41. Xu L, Myneni RB, Chapin Iii FS, Callaghan TV, Pinzon JE, Tucker CJ, Zhu Z, Bi J, Ciais P, Tømmervik H, Euskirchen ES, Forbes BC, Piao SL, Anderson BT, Ganguly S, Nemani RR, Goetz SJ, Beck PSA, Bunn AG, Cao C, Stroeve JC (2013) Temperature and vegetation seasonality diminishment over northern lands. Nat Clim Chang 3(6):581–586. doi: 10.1038/nclimate1836 Google Scholar
  42. Yang Y-H, Ma W-H, Mohammat A, Fang J-Y (2007) Storage, patterns and controls of soil nitrogen in China. Pedosphere 17(6):776–785. doi: 10.1016/s1002-0160(07)60093-9 CrossRefGoogle Scholar
  43. Yang Z-p, Ou YH, Xu X-l, Zhao L, M-h S, C-p Z (2010) Effects of permafrost degradation on ecosystems. Acta Ecol Sin 30(1):33–39. doi: 10.1016/j.chnaes.2009.12.006 CrossRefGoogle Scholar
  44. Yang MX, Wang SL, Yao TD, Gou XH, Lu AX, Guo XJ (2004) Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) plateau. Cold Reg Sci Technol 39(1):47–53. doi: 10.1016/j.coldregions.2004.01.002 CrossRefGoogle Scholar
  45. Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang 2(9):663–667. doi: 10.1038/nclimate1580 CrossRefGoogle Scholar
  46. Yin YH, Wu SH, Zhao DS, Zheng D, Pan T (2013) Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau. J Geogr Sci 23(2):195–207. doi: 10.1007/s11442-013-1003-0 CrossRefGoogle Scholar
  47. You Q, Fraedrich K, Ren G, Pepin N, Kang S (2013) Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. Int J Climatol 33(6):1337–1347. doi: 10.1002/joc.3512 CrossRefGoogle Scholar
  48. Zhang L, Guo HD, Ji L, Lei LP, Wang CZ, Yan DM, Li B, Li J (2013) Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau. J Appl Remote Sens 7. doi: 10.1117/1.jrs.7.073572
  49. Zhang L, Guo HD, Wang CZ, Ji L, Li J, Wang K, Dai L (2014) The long-term trends (1982-2006) in vegetation greenness of the alpine ecosystem in the Qinghai-Tibetan Plateau. Environmental Earth Sciences 72(6):1827–1841. doi: 10.1007/s12665-014-3092-1 CrossRefGoogle Scholar
  50. Zheng D, Zhang Q, Wu WS (2000) Mountain geoecology and sustainable development of the Tibetan Plateau. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  51. Zhou DW, Fan GZ, Huang RH, Fang ZF, Liu YQ, Li HQ (2007) Interannual variability of the normalized difference vegetation index on the Tibetan plateau and its relationship with climate change. Adv Atmos Sci 24(3):474–484. doi: 10.1007/s00376-007-0474-2 CrossRefGoogle Scholar
  52. Zhu GF, Su YH, Li X, Zhang K, Li CB (2013) Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach. J Hydrol 476:42–51. doi: 10.1016/j.jhydrol.2012.10.006 CrossRefGoogle Scholar

Copyright information

© ISB 2017

Authors and Affiliations

  1. 1.Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  3. 3.Center for Environmental Remote SensingChiba UniversityChibaJapan

Personalised recommendations