International Journal of Biometeorology

, Volume 61, Issue 7, pp 1233–1245 | Cite as

Combining dispersion modelling with synoptic patterns to understand the wind-borne transport into the UK of the bluetongue disease vector

Original Paper
  • 201 Downloads

Abstract

Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors (Culicoides biting midges) on the wind. The weather conditions which influence the midge’s flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods.

Keywords

Bluetongue Culicoides Wind Synoptic pattern Map classification Dispersion modelling 

Supplementary material

484_2016_1301_MOESM1_ESM.docx (127 kb)
ESM 1(DOCX 127 kb).

References

  1. Agren E, Burgin L, Sternberg Lewerin S, Gloster J, Elvander M (2010) A likely way of introduction of BTV8 to Sweden in August 2008—comparison of results from two models for atmospheric transport of the biting midge vector. Vet Rec 167:484–488CrossRefGoogle Scholar
  2. Alba A, Casal J, Domingo M (2004) Possible introduction of bluetongue into the Balearic Islands, Spain, in 2000, via air streams. Vet Rec 155:460–461CrossRefGoogle Scholar
  3. Baylis M, Mellor PS, Meiswinkel R (1999) Horse sickness and ENSO in South Africa. Nature 397:574. doi:10.1038/17512 CrossRefGoogle Scholar
  4. Baylis M, Mellor PS, Wittmann EJ, Rogers DJ (2001) Prediction of areas around the Mediterranean at risk of bluetongue by modelling the distribution of its vector using satellite imaging. Vet Rec 149:639–643CrossRefGoogle Scholar
  5. Blackwell A (1997) Diel flight periodicity of the biting midge Culicoides impunctatus and the effects of meteorological conditions. Med Vet Entomol 11:361–367CrossRefGoogle Scholar
  6. Braverman Y, Chechik F (1996) Air streams and introduction of animal disease borne on Culicoides (Diptera, Ceratopogonidae) into Israel. Revue Scientifique et Technique de l’Office International des Epizooties 15:1037–1199CrossRefGoogle Scholar
  7. Buell CE (1975) The topography of empirical orthogonal functions. Fourth conference on probability and statistics in atmospheric science. American Meteorological Society, BostonGoogle Scholar
  8. Calistri P, Giovanni A, Conte A, Nannini D, Santucci U, Patta C, Rolesu S, Caporale V (2004) Bluetongue in Italy: part I. Vet Ital 40:243–251Google Scholar
  9. Carpenter S, Szmaragd C, Barber J, Labuschagne K, Gubbins S, Mellor PS (2008) An assessment of Culicoides surveillance techniques in northern Europe: have we underestimated a potential bluetongue virus vector? J Appl Ecol 45:1237–1245. doi:10.1111/j.1365-2664.2008.01511.x Google Scholar
  10. Cattell RB (1966) The scree test for the number of factors. Multivariate Behavioural Research 1:245–435CrossRefGoogle Scholar
  11. Davies T, Cullen MJP, Malcolm A, Mawson MH, Staniforth A, White AA, Wood N (2005) A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q J R Meteorol Soc 131:1579–1782. doi:10.1256/qj.04.101 CrossRefGoogle Scholar
  12. Davis RE, Kalkstein LS (1990) Development of an automated spatial synoptic climatological classification. Int J Climatol 10:769–794. doi:10.1002/joc.3370100802 CrossRefGoogle Scholar
  13. Ducheyne E, Lange M, Van der Stede Y, Meroc E, Durand B, Hendrickx G (2011) A stochastic predictive model for the natural spread of bluetongue. Preventive Veterinary Medicine 99:48–59CrossRefGoogle Scholar
  14. Garcia-Lastra R, Leginagoikoa I, Plazaola JM, Ocabo B, Aduriz G, Nunes T, Juste RA (2012) Bluetongue virus serotype 1 outbreak in the Basque country (northern Spain) 2007–2008. Data support a primary vector windborne transport. PLoS One 7:e34431. doi:10.1371/journal.pone.0034421 CrossRefGoogle Scholar
  15. Gloster J, Burgin L, Witham C, Athanassiadou M, Mellor PS (2008) Bluetongue in the United Kingdom and northern Europe in 2007 and key issues for 2008. Vet Rec 162:298–302CrossRefGoogle Scholar
  16. Gubbins S, Carpenter S, Baylis M, Wood JLN, Mellor PS (2008) Assessing the risk of bluetongue to UK livestock: uncertainty and sensitivity analyses of a temperature dependent model for the basic reproduction number. J R Soc Interface 5:363–371. doi:10.1098/rsif.2007.1110 CrossRefGoogle Scholar
  17. Ekström M, Jönnson P, Barring L (2002) Synoptic pressure patterns associated with major wind erosion events in southern Sweden (1973–1991). Clim Res 23:51–66CrossRefGoogle Scholar
  18. Ekström M, McTainsh GH, Chappell A (2004) Australian dust storms: temporal trends and relationships with synoptic pressure distributions (1960–99). Int J Climatol 24:1581–1599. doi:10.1002/joc.1072 CrossRefGoogle Scholar
  19. Esteban P, Jones PD, Martín-Vide J, Mases M (2005) Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees. Int J Climatol 25:319–329. doi:10.1002/joc.1103 CrossRefGoogle Scholar
  20. Harris RM, Grose MR, Lee G, Bindoff NL, Porfirio LL, Fox-Hughes P (2014) Climate projections for ecologists. WIREs Clim Change 5:621–637CrossRefGoogle Scholar
  21. Hart M, De Dear R, Hyde R (2006) A synoptic climatology of tropospheric ozone episodes in Sydney, Australia. Int J Climatol 26:1635–1649. doi:10.1002/joc.1332 CrossRefGoogle Scholar
  22. Hendrickx G, Gilbert M, Staubach C, Elbers A, Mintiens K, Gerbier G, Ducheyne E (2008) A wind density model to quantify the airborne spread of Culicoides species during North-Western Europe bluetongue epidemic, 2006. Preventive Veterinary Medicine 87:162–181. doi:10.1016/j.prevetmed.2008.06.009 CrossRefGoogle Scholar
  23. Hess P, Brezovsky H. 1977. Katalog der Grosswetterlagen Europas (1881–1976). Berichte des Deutschen Wetterdienstes, Nr. 113Bd. 15. Selbstverlag des Deutschen Wetterdienstes, Offenbach am MainGoogle Scholar
  24. Hewitson BC, Crane RG (1992) Regional climate in the GISS GCM: surface air temperature. J Clim 5:1002–1011CrossRefGoogle Scholar
  25. Hoogendam K (2007) International study on the economic consequences of outbreaks of bluetongue serotype 8 in North-Western Europe. Leeuwarden, Van Hall InstituteGoogle Scholar
  26. Jolliffe IT (2002) Principal component analysis, 2nd edn. New York, Springer-VerlagGoogle Scholar
  27. Jones A, Thomson D, Hort M, Devenish B (2007) The U.K. Met Office’s next-generation atmospheric dispersion model, NAME III. In: Borrego C, Norman AL (eds) Air pollution modeling and its application XVII. Springer, New YorkGoogle Scholar
  28. Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 32:443–482Google Scholar
  29. Kelso JK, Milne GJ (2014) A spatial simulation model for the dispersal of the bluetongue vector Culicoides brevitarsis in Australia. PLoS One 9(8):e104646. doi:10.1371/journal.pone.0104646 CrossRefGoogle Scholar
  30. Lamb HH (1972) British Isles weather types and a register of the daily sequence of circulation types. Geophysical memoirs 16. HMSO, LondonGoogle Scholar
  31. Lund IA (1963) Map-pattern classification by statistical methods. J Appl Meteorol 2:56–65CrossRefGoogle Scholar
  32. Mellor PS (2000) Replication of arboviruses in insect vectors. J Comp Pathol 123:231–247CrossRefGoogle Scholar
  33. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706CrossRefGoogle Scholar
  34. Pedgley D (1982) Windborne pests and diseases. Ellis Horwood Limited, Chichester, UKGoogle Scholar
  35. Preisendorfer RW (1988) Principal component analysis in meteorology and oceanography. Elsevier, AmsterdamGoogle Scholar
  36. Peters J, Waegeman W, Van doninck J, Ducheyne E, Calvete C, Lucientes J, NEC V, De Baets B (2014) Predicting spatio-temporal distributions in Spain based on environmental habitat characteristics and species dispersal. Ecological Informatics 22:69–80CrossRefGoogle Scholar
  37. Pioz M, Guis H, Crespin L, Gay E, Calavas D, Durand B, Abrial D, Ducrot C (2012) Why did bluetongue spread the way it did? Factors influencing the velocity of bluetongue virus serotype 8 epizootic wave in France? PLoS One 7:e43360. doi:10.1371/journal.pone.0043360 CrossRefGoogle Scholar
  38. Purse BV, Mellor PS, Rogers DJ, Samuel AR, Mertens PC, Baylis M (2005) Climate change and the recent emergence of bluetongue in Europe. Nat Rev Microbiol 3:171–181. doi:10.1038/nrmicro1090 CrossRefGoogle Scholar
  39. Purse BV, McCormick BJJ, Mellor PS, Baylis M, Boorman JPT, Borras D, Burgu I, Capela R, Caracappa S, Collantes F, De Liberato C, Delgado JA, Denison E, Georgiev G, El Harak M, De La Rocque S, Lhor Y, Lucientes J, Mangana O, Miranda MA, Nedelchev N, Nomikou K, Ozkul A, Patakakis M, Pena I, Scaramozzino P, Torina A, Rogers DJ (2007) Incriminating bluetongue virus vectors with climate envelope models. J Appl Ecol 44:1231–1242. doi:10.1111/j.1365-2664.2007.01342.x CrossRefGoogle Scholar
  40. Richman MB (1986) Rotation of principal components. J Climatol 6:293–335CrossRefGoogle Scholar
  41. Sanders CJ, Carpenter S (2014) Assessment of an immunomarking technique for the study of dispersal of Culicoides biting midges. Infect Genet Evol 28:583–587CrossRefGoogle Scholar
  42. Samy AM, Peterson AT (2016) Climate change influences on the global potential distribution of bluetongue virus. PLoS One 11(3):e0150489. doi:10.1371/journal.pone.0150489 CrossRefGoogle Scholar
  43. Schultz M, Mudelsee M (2002) REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput Geosci 28:421–426CrossRefGoogle Scholar
  44. Sellers RF, Pedgley DE, Tucker MR (1978) Possible windborne spread of bluetongue to Portugal, June-July 1956. J Hyg 81:189–196CrossRefGoogle Scholar
  45. Sellers RF, Maarouf AR (1991) Possible introduction of epizootic hemorrhagic-disease of deer virus (serotype-1) and bluetongue virus (serotype-11) into British-Columbia in 1987 and 1988 by infected Culicoides carried on the wind. Can J Vet Res 55:367–370Google Scholar
  46. Serra C, Fernandez Mills G, Periago MC, Lana X (1998) Surface synoptic circulation and daily precipitation in Catalonia. Theor Appl Climatol 59:29–49. doi:10.1007/s007040050011 CrossRefGoogle Scholar
  47. Tabachnick WJ (2010) Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J Exp Biol 213:946–954CrossRefGoogle Scholar
  48. Wilks DS (1995) Statistical methods in the atmospheric sciences. Academic Press, LondonGoogle Scholar
  49. Wilson A, Mellor P (2008) Bluetongue in Europe: vectors, epidemiology and climate change. Parasitol Res 103:S69–S77. doi:10.1007/s00436-00008-01053-x CrossRefGoogle Scholar
  50. Wittmann EJ, Mellor PS, Baylis M (2001) Using climate data to map the potential distribution of Culicoides imicola (Diptera: Ceratopogonidae) in Europe. Revue Scientifique et Technique de l’Office International des Epizooties 20:731–740CrossRefGoogle Scholar
  51. Yarnal B (1993) Synoptic climatology in environmental analysis. Belhaven Press, LondonGoogle Scholar
  52. Zuliani A, Masssolo A, Lysyk T, Johnson G, Marshall S, Berger K, Cork SC (2015) Modelling the northward expansion of Culicoides sonorensis (Dipteria: Ceratopogonidae) under future climate scenarios. PLoS One 10(8):e0130294. doi:10.1371/journal.pone.0130294 CrossRefGoogle Scholar

Copyright information

© ISB 2017

Authors and Affiliations

  1. 1.Met OfficeExeterUK
  2. 2.CSIRO Land and Water, Black MountainCanberraAustralia
  3. 3.School of Earth and EnvironmentUniversity of LeedsLeedsUK

Personalised recommendations