International Journal of Biometeorology

, Volume 61, Issue 5, pp 833–843 | Cite as

Vulnerability to extreme-heat-associated hospitalization in three counties in Michigan, USA, 2000–2009

  • Adesuwa S. Ogbomo
  • Carina J. Gronlund
  • Marie S. O’Neill
  • Tess Konen
  • Lorraine Cameron
  • Robert Wahl
Original Paper

Abstract

With climate change, extreme heat (EH) events are increasing, so it is important to understand who is vulnerable to heat-associated morbidity. We determined the association between EH and hospitalizations for all natural causes; cardiovascular, respiratory, and renal diseases; diabetes mellitus; and acute myocardial infarction in Michigan, USA, at different intensities and durations. We assessed confounding by ozone and how individual characteristics and health insurance payer (a proxy for income) modified these associations. We obtained Michigan Inpatient Database, National Climatic Data Center, and US Environmental Protection Agency ozone data for May–September, 2000–2009 for three Michigan counties. We employed a case-crossover design and modeled EH as an indicator for temperature above the 95th, 97th, or 99th percentile thresholds for 1, 2, 3, or 4 days. We examined effect modification by patient age, race, sex, and health insurance payer and pooled the county results. Among non-whites, the pooled odds ratio for hospitalization on EH (97th percentile threshold) vs. non-EH days for renal diseases was 1.37 (95 % CI = 1.13–1.66), which increased with increasing EH intensity, but was null among whites (OR = 1.00, 95 % CI = 0.81, 1.25). We observed a null association between EH and cardiovascular hospitalization. EH (99th percentile threshold) was associated with myocardial infarction hospitalizations. Confounding by ozone was minimal. EH was associated with hospitalizations for renal disease among non-whites. This information on vulnerability to heat-associated morbidity helps characterize the public health burden of EH and target interventions including patient education.

Keywords

Hospitalization Temperature Morbidity Heat wave Heat 

Supplementary material

484_2016_1261_MOESM1_ESM.docx (50 kb)
ESM 1(DOCX 49 kb)

References

  1. Basagana X et al (2011) Heat waves and cause-specific mortality at all ages. Epidemiology 22:765–772. doi:10.1097/EDE.0b013e31823031c5 CrossRefGoogle Scholar
  2. Basu R (2002) Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev 24:190–202. doi:10.1093/epirev/mxf007 CrossRefGoogle Scholar
  3. Basu R, Pearson D, Malig B, Broadwin R, Green R (2012) The effect of high ambient temperature on emergency room visits. Epidemiology 23:813–820. doi:10.1097/EDE.0b013e31826b7f97 CrossRefGoogle Scholar
  4. Bell ML, O’Neill MS, Ranjit N, Borja-Aburto VH, Cifuentes LA, Gouveia NC (2008) Vulnerability to heat-related mortality in Latin America: a case-crossover study in Sao Paulo, Brazil, Santiago, Chile and Mexico City, Mexico. Int J of Epidemiol 37:796–804. doi:10.1093/ije/dyn094 CrossRefGoogle Scholar
  5. Bobb JF, Obermeyer Z, Wang Y, Dominici F (2014) Cause-specific risk of hospital admission related to extreme heat in older adults. JAMA 312:2659–2667. doi:10.1001/jama.2014.15715 CrossRefGoogle Scholar
  6. Buckley JP, Samet JM, Richardson DB (2014) Commentary: Does air pollution confound studies of temperature? Epidemiology 25:242–245. doi:10.1097/ede.0000000000000051
  7. Fletcher BA, Lin S, Fitzgerald EF, Hwang S-A (2012) Association of summer temperatures with hospital admissions for renal diseases in New York state: a case-crossover study. Am J Epidemiol. doi:10.1093/aje/kwr417 Google Scholar
  8. Genovese G et al (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–845. doi:10.1126/science.1193032 CrossRefGoogle Scholar
  9. Green RS, Basu R, Malig B, Broadwin R, Kim JJ, Ostro B (2010) The effect of temperature on hospital admissions in nine California counties. Int J Public Health 55:113–121. doi:10.1007/s00038-009-0076-0 CrossRefGoogle Scholar
  10. Gronlund CJ (2014) Racial and socioeconomic disparities in heat-related health effects and their mechanisms: a review. Curr Epidemiol Rep. doi:10.1007/s40471-014-0014-4 Google Scholar
  11. Gronlund CJ, Zanobetti A, Schwartz JD, Wellenius GA, O’Neill MS (2014) Heat, heat waves, and hospital admissions among the elderly in the United States, 1992-2006. Environ Health Perspect. doi:10.1289/ehp.1206132 Google Scholar
  12. Gronlund CJ, Zanobetti A, Wellenius GA, Schwartz JD, O’Neill MS (2016) Vulnerability to renal, heat and respiratory hospitalizations during extreme heat among US elderly. Clim Chang 136:1–15. doi:10.1007/s10584-016-1638-9 CrossRefGoogle Scholar
  13. Hajat S, Kovats RS, Atkinson WR, Haine A (2002) Impact of hot temperatures on death in London: a time series approach. J Epidemiol Commun Health 56:367–372. doi:10.1136/jech CrossRefGoogle Scholar
  14. Isaksen TB, Yost MG, Hom EK, Ren Y, Lyons H, Fenske RA (2015) Increased hospital admissions associated with extreme-heat exposure in King County, Washington, 1990-2010. Rev Environ Health 30:51–64. doi:10.1515/reveh-2014-0050
  15. Jones T, Liang AP, Kilbourne EM et al (1982) Morbidity and mortality associated with the July 1980 heat wave in St. Louis and Kansas City, MO. JAMA 247:3327–3331. doi:10.1001/jama.1982.03320490025030 CrossRefGoogle Scholar
  16. Knowlton K et al (2009) The 2006 California heat wave: impacts on hospitalizations and emergency department visits. Environ Health Perspect 117:61–67. doi:10.1289/ehp.11594 CrossRefGoogle Scholar
  17. Koken PJM, Piver WT, Ye F, Elixhauser A, Olsen LM, Portier CJ (2003) Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environ Health Perspect 111:1312–1317. doi:10.1289/ehp.5957 CrossRefGoogle Scholar
  18. Kravchenko J, Abernethy AP, Fawzy M, Lyerly HK (2013) Minimization of heatwave morbidity and mortality. Am J Prev Med 44:274–282. doi:10.1016/j.amepre.2012.11.015 CrossRefGoogle Scholar
  19. Lam HC, Li AM, Chan EY, Goggins WB 3rd (2016) The short-term association between asthma hospitalisations, ambient temperature, other meteorological factors and air pollutants in Hong Kong: a time-series study. Thorax. doi:10.1136/thoraxjnl-2015-208054 Google Scholar
  20. Levine M, LoVecchio F, Ruha AM, Chu G, Roque P (2012) Influence of drug use on morbidity and mortality in heatstroke. J Med Toxicol 8:252–257. doi:10.1007/s13181-012-0222-6
  21. Li M, Gu S, Bi P, Yang J, Liu Q (2015) Heat waves and morbidity: current knowledge and further direction-a comprehensive literature review. Int J Environ Res Public Health 12:5256–5283. doi:10.3390/ijerph120505256 CrossRefGoogle Scholar
  22. Luber G, McGeehin M (2008) Climate change and extreme heat events. Am J Prev Med 35:429–435. doi:10.1016/j.amepre.2008.08.021 CrossRefGoogle Scholar
  23. Madrigano J, Mittleman MA, Baccarelli A, Goldberg R, Melly S, von Klot S, Schwartz J (2013) Temperature, myocardial infarction, and mortality: effect modification by individual- and area-level characteristics. Epidemiology 24:439–446. doi:10.1097/EDE.0b013e3182878397 CrossRefGoogle Scholar
  24. Mamou F, Racine R, Henderson T, Fiedler J (2013) Michigan heat-related illness, emergency department visits: 2013 summary. Michigan Department of Health and Human Services, Lansing http://www.michigan.gov/documents/mdch/Michigan_Heat_Summary_Summer_2013__437200_7.pdf Google Scholar
  25. Martiello MA, Giacchi MV (2010) High temperatures and health outcomes: a review of the literature. Scandinavian J Public Health 38:826–837. doi:10.1177/1403494810377685 CrossRefGoogle Scholar
  26. Mastrangelo G, Hajat S, Fadda E, Buja A, Fedeli U, Spolaore P (2006) Contrasting patterns of hospital admissions and mortality during heat waves: are deaths from circulatory disease a real excess or an artifact? Med Hypotheses 66:1025–1028. doi:10.1016/j.mehy.2005.09.053 CrossRefGoogle Scholar
  27. McGeehin MA, Mirabelli M (2001) The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environ Health Perspect 109:185–189CrossRefGoogle Scholar
  28. National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC)Temperature data (2011) http://lwf.ncdc.noaa.gov/oa/ncdc.html.
  29. Peralta CA et al (2013) Trajectories of kidney function decline in young black and white adults with preserved GFR: results from the Coronary Artery Risk Development in Young Adults (CARDIA) study. Am J Kidney Dis 62:261–266. doi:10.1053/j.ajkd.2013.01.012
  30. Petitti DB, Hondula DM, Yang S, Harlan SL, Chowell G (2016) Multiple trigger points for quantifying heat-health impacts: new evidence from a hot climate. Environ Health Perspect 124:176–183. doi:10.1289/ehp.1409119 Google Scholar
  31. Phung D, Thai PK, Guo Y, Morawska L, Rutherford S, Chu C (2016) Ambient temperature and risk of cardiovascular hospitalization: an updated systematic review and meta-analysis. Sci Total Environ 550:1084–1102. doi:10.1016/j.scitotenv.2016.01.154 CrossRefGoogle Scholar
  32. Pillai SK et al (2014) Heat illness: predictors of hospital admissions among emergency department visits-Georgia, 2002-2008. J Commun Health 39:90–98. doi:10.1007/s10900-013-9743-4 CrossRefGoogle Scholar
  33. Pollak MR, Genovese G, Friedman DJ (2012) APOL1 and kidney disease. Curr Opin Nephrol Hypertens 21:179–182. doi:10.1097/MNH.0b013e32835012ab CrossRefGoogle Scholar
  34. Poumadère M, Mays C, Le Mer S, Blong R (2005) The 2003 heat wave in France: dangerous climate change here and now. Risk Anal 25:1483–1494. doi:10.1111/j.1539-6924.2005.00694.x CrossRefGoogle Scholar
  35. Schwartz J (2000) Harvesting and long term exposure effects in the relation between air pollution and mortality. Am J Epidemiol 151:440–448CrossRefGoogle Scholar
  36. Schwartz J, Samet JM, Patz JA (2004) Hospital admissions for heart disease: the effects of temperature and humidity. Epidemiology 15:755–761CrossRefGoogle Scholar
  37. Semenza JC, McCullough JE, Flanders WD, McGeehin MA, Lumpkin JR (1999) Excess hospital admissions during the July 1995 heat wave in Chicago. Am J Prev Med 16:269–277. doi:10.1016/s0749-3797(99)00025-2 CrossRefGoogle Scholar
  38. Son JY, Bell ML, Lee JT (2014) The impact of heat, cold, and heat waves on hospital admissions in eight cities in Korea. Int J Biometeorol 58:1893–1903. doi:10.1007/s00484-014-0791-y CrossRefGoogle Scholar
  39. Soneja S, Jiang C, Fisher J, Upperman CR, Mitchell C, Sapkota A (2016) Exposure to extreme heat and precipitation events associated with increased risk of hospitalization for asthma in Maryland, U.S.A. Environ Health 15:57. doi:10.1186/s12940-016-0142-z
  40. Tsai SS, Chen PS, Yang YH, Liou SH, Wu TN, Sung FC, Yang CY (2012) Air pollution and hospital admissions for myocardial infarction: are there potentially sensitive groups? J Toxicol Environ Health Part A 75:242–251. doi:10.1080/15287394.2012.641202 CrossRefGoogle Scholar
  41. Turner LR, Barnett AG, Connell D, Tong S (2012) Ambient temperature and cardiorespiratory morbidity: a systematic review and meta-analysis. Epidemiology 23:594–606. doi:10.1097/EDE.1090b1013e3182572795 CrossRefGoogle Scholar
  42. U.S. Environmental Protection Agency (2012). Technology Transfer Network (TTN). Air Quality System (AQS) http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm.
  43. Vogeli C, Shields AE, Lee TA, Gibson TB, Marder WD, Weiss KB, Blumenthal D (2007) Multiple chronic conditions: prevalence, health consequences, and implications for quality, care management, and costs. J Gen Intern Med 22(Suppl 3):391–395. doi:10.1007/s11606-007-0322-1 CrossRefGoogle Scholar
  44. Wichmann J, Rosengren A, Sjoberg K, Barregard L, Sallsten G (2013) Association between ambient temperature and acute myocardial infarction hospitalisations in Gothenburg, Sweden: 1985-2010. PLoS One 8:e62059. doi:10.1371/journal.pone.0062059 CrossRefGoogle Scholar
  45. Ye X, Wolff R, Yu W, Vaneckova P, Pan X, Tong S (2012) Ambient temperature and morbidity: a review of epidemiological evidence. Environ Health Perspect 120:19–28. doi:10.1289/ehp.1003198 CrossRefGoogle Scholar

Copyright information

© ISB 2016

Authors and Affiliations

  • Adesuwa S. Ogbomo
    • 1
  • Carina J. Gronlund
    • 2
  • Marie S. O’Neill
    • 1
    • 2
  • Tess Konen
    • 1
  • Lorraine Cameron
    • 3
  • Robert Wahl
    • 4
  1. 1.Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborUSA
  2. 2.Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborUSA
  3. 3.Division of Environmental HealthMichigan Department of Health and Human ServicesLansingUSA
  4. 4.Lifecourse Epidemiology and Genomics DivisionMichigan Department of Health and Human ServicesLansingUSA

Personalised recommendations