Advertisement

International Journal of Biometeorology

, Volume 60, Issue 10, pp 1509–1517 | Cite as

Regional forecast model for the Olea pollen season in Extremadura (SW Spain)

  • Santiago Fernández-RodríguezEmail author
  • Pablo Durán-Barroso
  • Inmaculada Silva-Palacios
  • Rafael Tormo-Molina
  • José María Maya-Manzano
  • Ángela Gonzalo-Garijo
Original Paper

Abstract

The olive tree (Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.

Keywords

Olea europaea Time series analysis Forecasting Temporal modelling 

Notes

Acknowledgments

This work was made possible by research projects PRI06A190 and PRI BS10008, and research groups aid GR15060 financed by the Regional Government, Junta de Extremadura (Spain) and the European Regional Development Fund.

References

  1. Achmakh L, Bouziane H, Aboulaich N, Trigo MM, Janati A, Kadiri M (2015) Airborne pollen of Olea europaea L. in Tetouan (NW Morocco): heat requirements and forecasts. Aerobiologia 31:191–199CrossRefGoogle Scholar
  2. AEMET (2015) Climate statistics. Badajoz Airport (1971–2000). Agencia Estatal de Meteorología. Gobierno de España. http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?l=4452&k=ext
  3. Aguilera F, Ruiz Valenzuela L (2009) Study of the floral phenology of Olea europaea L. in Jaén province (SE Spain) and its relation with pollen emission. Aerobiologia 25:217–225CrossRefGoogle Scholar
  4. Aguilera F, Ruiz-Valenzuela L (2014) Forecasting olive crop yields based on long-term aerobiological data series and bioclimatic conditions for the southern Iberian Peninsula. Span J Agric Res 12:215–224CrossRefGoogle Scholar
  5. Aguilera F, Valenzuela LR (2012) Microclimatic-induced fluctuations in the flower and pollen production rate of olive trees (Olea europaea L.). Grana 51:228–239CrossRefGoogle Scholar
  6. Aguilera F, Fornaciari M, Ruiz-Valenzuela L, Galán C, Msallem M, Dhiab A, Guardia C-D La, del Mar Trigo M, Bonofiglio T, Orlandi F (2015a) Phenological models to predict the main flowering phases of olive (Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region. Int J Biometeorol 59:629–641Google Scholar
  7. Aguilera F, Orlandi F, Ruiz-Valenzuela L, Msallem M, Fornaciari M (2015b) Analysis and interpretation of long temporal trends in cumulative temperatures and olive reproductive features using a seasonal trend decomposition procedure. Agric For Meteorol 203:208–216CrossRefGoogle Scholar
  8. Aznarte MJL, Benítez Sánchez JM, Lugilde DN, de Linares Fernández C, de la Guardia CD, Sánchez FA (2007) Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models. Expert Syst Appl 32:1218–1225CrossRefGoogle Scholar
  9. Bonofiglio T, Orlandi F, Ruga L, Romano B, Fornaciari M (2013) Climate change impact on the olive pollen season in Mediterranean areas of Italy: air quality in late spring from an allergenic point of view. Environ Monit Assess 185:877–890CrossRefGoogle Scholar
  10. Cariñanos P, Casares-Porcel M (2011) Urban green zones and related pollen allergy: a review. Some guidelines for designing spaces with low allergy impact. Landsc Urban Plan 101:205–214CrossRefGoogle Scholar
  11. Cariñanos P, Casares-Porcel M, Quesada-Rubio JM (2014) Estimating the allergenic potential of urban green spaces: a case-study in Granada, Spain. Landsc Urban Plan 123:134–144CrossRefGoogle Scholar
  12. Damialis A, Halley JM, Gioulekas D, Vokou D (2007) Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmos Environ 41:7011–7021CrossRefGoogle Scholar
  13. Díaz J, Linares C, Tobías A (2007) Short-term effects of pollen species on hospital admissions in the city of Madrid in terms of specific causes and age. Aerobiologia 23:231–238CrossRefGoogle Scholar
  14. Domı́nguez E, Infante F, Galán C, Guerra FFV (1993) Variations in the concentrations of airborne Olea pollen and associated pollinosis in Córdoba (Spain): a study of the 10-years period 1982–1991. J Investig Allergol Clin Immunol 3(3):121–129Google Scholar
  15. Efstratiadis A, Koutsoyiannis D (2010) One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrol Sci J 55:58–78CrossRefGoogle Scholar
  16. Feo-Brito F, Gimeno PM, Carnés J, Martín R, Fernández-Caldas E, Lara P, López-Fidalgo J, Guerra F (2011) Olea europaea pollen counts and aeroallergen levels predict clinical symptoms in patients allergic to olive pollen. Ann Allergy Asthma Immunol 106:146–152CrossRefGoogle Scholar
  17. Fernández-Llamazares Á, Belmonte J, Delgado R, De Linares C (2014) A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain). Int J Biometeorol 58:371–382CrossRefGoogle Scholar
  18. Fernández-Rodríguez S, Skjøth CA, Tormo-Molina R, Brandao R, Caeiro E, Silva-Palacios I, Gonzalo-Garijo Á, Smith M (2014a) Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula. Int J Biometeorol 58:337–348CrossRefGoogle Scholar
  19. Fernández-Rodríguez S, Tormo-Molina R, Maya-Manzano JM, Silva-Palacios I, Gonzalo-Garijo Á (2014b) Comparative study of the effect of distance on the daily and hourly pollen counts in a city in the south-western Iberian Peninsula. Aerobiologia 30:173–187CrossRefGoogle Scholar
  20. Fernández-Rodríguez S, Tormo-Molina R, Maya-Manzano JM, Silva-Palacios I, Gonzalo-Garijo Á (2014c) A comparative study on the effects of altitude on daily and hourly airborne pollen counts. Aerobiologia 30:257–268CrossRefGoogle Scholar
  21. Fornaciari M, Galan C, Mediavilla A, Dominquez E, Romano B (2000) Aeropalynological and phenological study in two different Mediterranean olive areas: Cordoba (Spain) and Perugia (Italy). Plant Biosyst 134:199–204CrossRefGoogle Scholar
  22. Fornaciari M, Orlandi F, Romano B (2005) Yield forecasting for olive trees: a new approach in a historical series (Umbria, Central Italy). Agron J 97:1537–1542CrossRefGoogle Scholar
  23. Frenguelli G, Ghitarrini S, Tedeschini E (2014) Climatic change in Mediterranean area and pollen monitoring. Flora Mediterr 24:99–107Google Scholar
  24. Galan C, Tormo R, Cuevas J, Infante F, Dominguez E (1991) Theoretical daily variation patterns of airborne pollen in the southwest of Spain. Grana 30:201–209CrossRefGoogle Scholar
  25. Galán C, Cariñanos P, García-Mozo H, Alcázar P, Domínguez-Vilches E (2001) Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain. Int J Biometeorol 45:59–63CrossRefGoogle Scholar
  26. Galán C, García-Mozo H, Vázquez L, Ruiz L, de la Guardia CD, Trigo MM (2005) Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49:184–188CrossRefGoogle Scholar
  27. Galán C, Cariñanos P, Alcázar P, Dominguez-Vilches E (2007) Spanish aerobiology network (REA) management and quality manual, Servicio de Publicaciones Universidad de Córdoba. ISBN 978-84-690-6353-8Google Scholar
  28. García-Mozo H, Mestre A, Galán C (2010) Phenological trends in southern Spain: a response to climate change. Agric For Meteorol 150:575–580CrossRefGoogle Scholar
  29. García-Mozo H, Yaezel L, Oteros J, Galán C (2014) Statistical approach to the analysis of olive long-term pollen season trends in southern Spain. Sci Total Environ 473–474:103–109CrossRefGoogle Scholar
  30. García-Mozo H, Oteros J, Galán C (2015) Phenological changes in olive (ola europaea l.) reproductive cycle in southern Spain due to climate change. Ann Agric Environ Med 22:421–428CrossRefGoogle Scholar
  31. Hernández-Ceballos MA, García-Mozo H, Adame JA, Domínguez-Vilches E, de la Morena BA, Bolívar JP, Galán C (2011) Synoptic and meteorological characterisation of olive pollen transport in Córdoba province (south-western Spain). Int J Biometeorol 55:17–34CrossRefGoogle Scholar
  32. Hernández-Ceballos MA, Skjøth CA, García-Mozo H, Bolívar JP, Galán C (2014) Improvement in the accuracy of back trajectories using WRF to identify pollen sources in southern Iberian Peninsula. Int J Biometeorol 58(10):2031–2043CrossRefGoogle Scholar
  33. Hidalgo PJ, Galán C, Domínguez E (2003) Male phenology of three species of Cupressus: correlation with airborne pollen. Trees - Struct Funct 17:336–344Google Scholar
  34. Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265CrossRefGoogle Scholar
  35. MAFE (2013) Survey areas and yields of crops. Analysis of olive groves in Spain. Ministry of Agriculture, Food and Environment of Government of Spain. http://www.magrama.gob.es/es/
  36. Mazzeo A, Palasciano M, Gallotta A, Camposeo S, Pacifico A, Ferrara G (2014) Amount and quality of pollen grains in four olive (Olea europaea L.) cultivars as affected by 'on' and 'off' years. Sci Hortic 170:89–93CrossRefGoogle Scholar
  37. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-KÜBler K, Bissolli P, BraslavskÁ OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, MÅGe F, Mestre A, Nordli Ø, PeÑUelas J, Pirinen P, RemiŠOvÁ V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust ANA (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976CrossRefGoogle Scholar
  38. Moriondo M, Orlandini S, Nuntiis PD, Mandrioli P (2001) Effect of agrometeorological parameters on the phenology of pollen emission and production of olive trees (Olea europea L.). Aerobiologia 17:225–232CrossRefGoogle Scholar
  39. Newnham RM, Sparks TH, Skjøth CA, Head K, Adams-Groom B, Smith M (2013) Pollen season and climate: is the timing of birch pollen release in the UK approaching its limit? Int J Biometeorol 57:391–400CrossRefGoogle Scholar
  40. Nilsson S, Persson S (1981) Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana 20:179–182CrossRefGoogle Scholar
  41. Orlandi F, Garcia-Mozo H, Galán C, Romano B, de la Guardia CD, Ruiz L, del Mar Trigo M, Dominguez-Vilches E, Fornaciari M (2010) Olive flowering trends in a large Mediterranean area (Italy and Spain). Int J Biometeorol 54:151–163CrossRefGoogle Scholar
  42. Oteros J, García-Mozo H, Hervás-Martínez C, Galán C (2013a) Year clustering analysis for modelling olive flowering phenology. Int J Biometeorol 57:545–555CrossRefGoogle Scholar
  43. Oteros J, García-Mozo H, Hervás C, Galán C (2013b) Biometeorological and autoregressive indices for predicting olive pollen intensity. Int J Biometeorol 57:307–316CrossRefGoogle Scholar
  44. Oteros J, Orlandi F, García-Mozo H, Aguilera F, Dhiab AB, Bonofiglio T, Abichou M, Ruiz-Valenzuela L, Del Trigo MM, Díaz De La Guardia C, Domínguez-Vilches E, Msallem M, Fornaciari M, Galán C (2014) Better prediction of Mediterranean olive production using pollen-based models. Agron Sustain Dev 34:685–694Google Scholar
  45. Oteros J, García-Mozo H, Botey R, Mestre A, Galán C (2015) Variations in cereal crop phenology in Spain over the last twenty-six years (1986–2012). Clim Chang 130:545–558CrossRefGoogle Scholar
  46. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefGoogle Scholar
  47. Pérez-Badia R, Vaquero C, Sardinero S, Galán C, García-Mozo H (2010) Intradiurnal variations of allergenic tree pollen in the atmosphere of Toledo (central Spain). Ann Agric Environ Med 17:269–275Google Scholar
  48. Recio M, Docampo S, García-Sánchez J, Trigo MM, Melgar M, Cabezudo B (2010) Influence of temperature, rainfall and wind trends on grass pollination in Malaga (western Mediterranean coast). Agric For Meteorol 150:931–940CrossRefGoogle Scholar
  49. Ribeiro H, Cunha M, Abreu I (2008a) Quantitative forecasting of olive yield in Northern Portugal using a bioclimatic model. Aerobiologia 24:141–150CrossRefGoogle Scholar
  50. Ribeiro H, Oliveira M, Abreu I (2008b) Intradiurnal variation of allergenic pollen in the city of Porto (Portugal). Aerobiologia 24:173–177CrossRefGoogle Scholar
  51. Rojo J, Pérez-Badia R (2015) Spatiotemporal analysis of olive flowering using geostatistical techniques. Sci Total Environ 505:860–869CrossRefGoogle Scholar
  52. Rojo J, Rapp A, Lara B, Fernández-González F, Pérez-Badia R (2015) Effect of land uses and wind direction on the contribution of local sources to airborne pollen. Sci Total Environ 538:672–682CrossRefGoogle Scholar
  53. Silva-Palacios I, Fernández-Rodríguez S, Durán-Barroso P, Tormo-Molina R, Maya-Manzano JM, Gonzalo-Garijo Á (2015) Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula. Int J Biometeorol 60(2):297–306Google Scholar
  54. Stach A, Garcia-Mozo H, Prieto-Baena JC, Czarnecka-Operacz M, Jenerowicz D, Silny W, Galan C (2007) Prevalence of Artemisia species pollinosis in western Poland: impact of climate change on aerobiological trends, 1995–2004. J Investig Allergol Clin Immunol 17:39–47Google Scholar
  55. Stach A, Smith M, Prieto Baena JC, Emberlin J (2008) Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environ Exp Bot 62:323–332CrossRefGoogle Scholar
  56. Staffolani L, Velasco-Jiménez MJ, Galán C, Hruska K (2011) Allergenicity of the ornamental urban flora: ecological and aerobiological analyses in Córdoba (Spain) and Ascoli Piceno (Italy). Aerobiologia 27:239–246CrossRefGoogle Scholar
  57. Tormo R, Silva I, Gonzalo Á, Moreno A, Pérez R, Fernández S (2011) Phenological records as a complement to aerobiological data. Int J Biometeorol 55:51–65CrossRefGoogle Scholar
  58. Tormo-Molina R, Gonzalo-Garijo MA, Silva-Palacios I, Munoz-Rodriguez AF (2010) General trends in airborne pollen production and pollination periods at a Mediterranean site (Badajoz, southwest Spain). J Investig Allergol Clin Immunol 20:567–574Google Scholar
  59. Torrigiani Malaspina T, Cecchi L, Morabito M, Onorari M, Domeneghetti MP, Orlandini S (2007) Influence of meteorological conditions on male flower phenology of Cupressus sempervirens and correlation with pollen production in Florence. Trees - Struct Funct 21:507–514CrossRefGoogle Scholar
  60. Vazquez LM, Galan C, Dominguez-Vilches E (2003) Influence of meteorological parameters on Olea pollen concentrations in Cordoba (south-western Spain). Int J Biometeorol 48:83–90CrossRefGoogle Scholar
  61. Velasco-Jiménez MJ, Alcázar P, Valle A, Trigo MM, Minero F, Domínguez-Vilches E, Galán C (2014) Aerobiological and ecological study of the potentially allergenic ornamental plants in south Spain. Aerobiologia 30:91–101CrossRefGoogle Scholar
  62. Villalba M, Rodríguez R, Batanero E (2014) The spectrum of olive pollen allergens. From structures to diagnosis and treatment. Methods 66:44–54CrossRefGoogle Scholar
  63. Voukantsis D, Niska H, Karatzas K, Riga M, Damialis A, Vokou D (2010) Forecasting daily pollen concentrations using data-driven modeling methods in Thessaloniki, Greece. Atmos Environ 44:5101–5111CrossRefGoogle Scholar
  64. Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39:SWC11–SWC116CrossRefGoogle Scholar
  65. Zhang Y, Isukapalli S, Bielory L, Georgopoulos P (2013) Bayesian analysis of climate change effects on observed and projected airborne levels of birch pollen. Atmos Environ 68:64–73CrossRefGoogle Scholar
  66. Zhang Y, Bielory L, Cai T, Mi Z, Georgopoulos P (2015) Predicting onset and duration of airborne allergenic pollen season in the United States. Atmos Environ 103:297–306CrossRefGoogle Scholar

Copyright information

© ISB 2016

Authors and Affiliations

  • Santiago Fernández-Rodríguez
    • 1
    Email author
  • Pablo Durán-Barroso
    • 1
  • Inmaculada Silva-Palacios
    • 2
  • Rafael Tormo-Molina
    • 3
  • José María Maya-Manzano
    • 3
  • Ángela Gonzalo-Garijo
    • 4
  1. 1.Department of Construction, Polytechnic SchoolUniversity of ExtremaduraCáceresSpain
  2. 2.Department of Applied Physics, Engineering Agricultural SchoolUniversity of ExtremaduraBadajozSpain
  3. 3.Department of Plant Biology, Ecology and Earth Sciences, Faculty of ScienceUniversity of ExtremaduraBadajozSpain
  4. 4.Section of AllergologyHospital Universitario Infanta CristinaBadajozSpain

Personalised recommendations