Advertisement

International Journal of Biometeorology

, Volume 60, Issue 4, pp 591–603 | Cite as

Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city

  • Simon Provençal
  • Onil Bergeron
  • Richard Leduc
  • Nathalie Barrette
Original Paper

Abstract

The newly developed Universal Thermal Climate Index (UTCI), along with the physiological equivalent temperature (PET), the humidex (HX) and the wind chill index (WC), was calculated in Quebec City, Canada, a city with a strong seasonal climatic variability, over a 1-year period. The objective of this study is twofold: evaluate the operational benefits of implementing the UTCI for a climate monitoring program of public comfort and health awareness as opposed to relying on traditional and simple indices, and determine whether thermal comfort monitoring specific to dense urban neighborhoods is necessary to adequately fulfill the goals of the program. In order to do so, an analysis is performed to evaluate each of these indices’ sensitivity to the meteorological variables that regulate them in different environments. Overall, the UTCI was found to be slightly more sensitive to mean radiant temperature, moderately more sensitive to humidity and much more sensitive to wind speed than the PET. This dynamic changed slightly depending on the environment and the season. In hot weather, the PET was found to be more sensitive to mean radiant temperature and therefore reached high values that could potentially be hazardous more frequently than the UTCI and the HX. In turn, the UTCI’s stronger sensitivity to wind speed makes it a superior index to identify potentially hazardous weather in winter compared to the PET and the WC. Adopting the UTCI broadly would be an improvement over the traditionally popular HX and WC indices. The urban environment produced favorable conditions to sustain heat stress conditions, where the indices reached high values more frequently there than in suburban locations, which advocates for weather monitoring specific to denser urban areas.

Keywords

Thermal comfort Universal Thermal Climate Index (UTCI) Physiological equivalent temperature (PET) Humidex Wind chill index Quebec City 

Notes

Acknowledgments

The authors are grateful to Environment Canada for supplying the meteorological data at the Jean-Lesage and Sainte-Foy stations, and to Dr. Andreas Matzarakis for providing the RayMan software. This project was funded by the Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques.

References

  1. Alduchov OA, Eskridge RE (1996) Improved Magnus form approximation of saturation vapor pressure. J Appl Meteorol 35:601–609CrossRefGoogle Scholar
  2. Bergeron O (2014) Caractérisation de la variabilité spatiale et temporelle de la température de l’air ambiant sur un territoire urbain : étude du cas de la ville de Québec. Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, Quebec CityGoogle Scholar
  3. Błażejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56:515–535CrossRefGoogle Scholar
  4. Błażejczyk K, Jendritzky G, Bröde P, Fiala D, Havenith G, Epstein Y, Psikuta A, Kampmann B (2013) An introduction to the Universal Thermal Climate Index (UTCI). Geogr Pol 86:5–10CrossRefGoogle Scholar
  5. Bleta A, Nastos PT, Matzarakis A (2014) Assessment of bioclimatic conditions on Crete Island, Greece. Reg Environ Chang 14:1967–1981CrossRefGoogle Scholar
  6. Bröde P, Krüger EL, Rossi FA, Fiala D (2012a) Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index (UTCI)—a case study in southern Brazil. Int J Biometeorol 56:471–480CrossRefGoogle Scholar
  7. Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012b) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56:481–494CrossRefGoogle Scholar
  8. Budd GM (2008) Wet-bulb globe temperature (WBGT)—its history and its limitations. J Sci Med Sport 11:20–32CrossRefGoogle Scholar
  9. Burkard K, Schneider A, Breitner S, Khan MH, Krämer A, Endlicher W (2011) The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh. Environ Pollut 159:2035–2043Google Scholar
  10. Cohen P, Potchter O, Matzarakis A (2012) Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build Environ 51:285–295CrossRefGoogle Scholar
  11. Environment Canada (2014). Spring and summer weather hazards. https://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=6C5D4990-1. Accessed 27 March 2015
  12. Environment Canada (2015) Wind chill—the chilling facts. http://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=5FBF816A-1. Accesses 27 March 2015
  13. Epstein Y, Moran DS (2006) Thermal comfort and the heat stress indices. Ind Health 44:388–398CrossRefGoogle Scholar
  14. Fanger PO (1970) Thermal comfort. Danish Technical, CopenhagenGoogle Scholar
  15. Fiala D, Lomas KJ, Stohrer M (1999) A computer model for human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972Google Scholar
  16. Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159CrossRefGoogle Scholar
  17. Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56:429–441CrossRefGoogle Scholar
  18. Gagge AP, Stolwijk JAJ, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77:247–260Google Scholar
  19. Gagge AP, Forbelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–729Google Scholar
  20. Havenith G, Fiala D, Błażejczyk K, Richards M, Bröde P, Holmér I, Rintamaki H, Benshabat Y, Jendritzky G (2012) The UTCI-clothing model. Int J Biometeorol 56:461–470CrossRefGoogle Scholar
  21. Höppe PR (1993) Heat balance modelling. Experientia 49:741–746CrossRefGoogle Scholar
  22. Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75CrossRefGoogle Scholar
  23. Humphreys MA (1994) Field studies and climate chamber experiments in thermal comfort research. In: Oseland NA, Humphreys MA (eds) Thermal comfort: past, present and future. Building Research Establishment, Watford, pp. 52–69Google Scholar
  24. Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428CrossRefGoogle Scholar
  25. Johansson E, Emmanuel R (2006) The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int J Biometeorol 51:119–133CrossRefGoogle Scholar
  26. Kántor N, Unger J (2011) The most problematic variable in the course of human-biometeorological comfort assessment—the mean radiant temperature. Cent Eur J Geosci 3:90–100Google Scholar
  27. Kántor N, Égerházi L, Unger J (2012) Subjective estimation of thermal environment in recreational urban spaces—Part 1: investigations in Szeged, Hungary. Int J Biometeorol 56:1075–1088CrossRefGoogle Scholar
  28. Krüger E, Drach P, Emmanuel R, Corbella O (2013) Assessment of daytime outdoor comfort levels in and outside the urban area of Glasgow, UK. Int J Biometeorol 57:521–533CrossRefGoogle Scholar
  29. Landsberg HE (1981) The urban climate. Academic Press, New YorkGoogle Scholar
  30. Leduc R, Ferland M, Gariépy J, Jacques G, Lelièvre C, Paulin G (1980) Îlot de chaleur à Québec: cas d’été. Bound Layer Meteorol 19:471–480CrossRefGoogle Scholar
  31. Leduc R, Jacques G, Ferland M, Lelièvre C (1981) Îlot de chaleur à Québec: cas d’hiver. Bound Layer Meteorol 21:315–324CrossRefGoogle Scholar
  32. Lin TP, de Dear R, Hwang RL (2011) Effect of thermal adaptation on seasonal outdoor thermal comfort. Int J Climatol 31:302–312CrossRefGoogle Scholar
  33. Makaremi N, Salleh E, Jaafar MZ, Hoseini AG (2012) Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Build Environ 48:7–14CrossRefGoogle Scholar
  34. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84CrossRefGoogle Scholar
  35. Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334CrossRefGoogle Scholar
  36. Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139CrossRefGoogle Scholar
  37. Mayer H, Holst J, Dostal P, Imbery F, Schindler D (2008) Human thermal comfort in summer within an urban street canyon in central Europe. Meteorol Z 17:241–250CrossRefGoogle Scholar
  38. MDDELCC (2015) Normales climatiques 1981–2010. http://www.mddelcc.gouv.qc.ca/climat/normales/climat-qc.htm. Accessed 27 March 2015
  39. Minard D, Belding HS, Kingston JR (1957) Prevention of heat casualties. J Am Med Assoc 165:1813–1818CrossRefGoogle Scholar
  40. Oliveira S, Andrade H (2007) An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon. Int J Biometeorol 52:69–84CrossRefGoogle Scholar
  41. Osczevski R, Bluestein M (2005) The new wind chill equivalent temperature chart. Bull Am Meteorol Soc 86:1453–1548CrossRefGoogle Scholar
  42. Pearlmutter D, Bitan A, Berliner P (1999) Microclimatic analysis of “compact” urban canyons in an arid zone. Atmos Environ 33:4143–4150CrossRefGoogle Scholar
  43. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  44. Santee WR, Wallace RF (2005) Comparison of weather service heat indices using a thermal model. J Therm Biol 30:65–72CrossRefGoogle Scholar
  45. Spagnolo J, de Dear R (2003) A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build Environ 38:721–738CrossRefGoogle Scholar
  46. Steadman RG (1984) A universal scale of apparent temperature. J Clim Appl Meteorol 23:1674–1687CrossRefGoogle Scholar
  47. Steadman RG (1994) Norms of apparent temperature in Australia. Aust Meteorol Mag 43:1–16Google Scholar
  48. Taylor NAS (2006) Challenges to temperature regulation when working in hot environments. Ind Health 44:331–344CrossRefGoogle Scholar
  49. Thorsson S, Honjo T, Lindberg F, Eliasson I, Lim E (2007a) Thermal comfort and outdoor activity in Japanese urban public places. Environ Behav 39:660–684CrossRefGoogle Scholar
  50. Thorsson S, Lindberg F, Eliasson I, Holmer B (2007b) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int J Climatol 27:1983–1993CrossRefGoogle Scholar
  51. Toy S, Yilmaz S (2010) Thermal sensation of people performing recreational activities in shadowy environment: a case study from Turkey. Theor Appl Climatol 101:329–343CrossRefGoogle Scholar

Copyright information

© ISB 2015

Authors and Affiliations

  • Simon Provençal
    • 1
  • Onil Bergeron
    • 2
  • Richard Leduc
    • 1
  • Nathalie Barrette
    • 1
  1. 1.Département de géographieUniversité LavalQuebec CityCanada
  2. 2.Direction du suivi de l’état de l’environnementMinistère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiquesQuebec CityCanada

Personalised recommendations