International Journal of Biometeorology

, Volume 60, Issue 3, pp 361–372 | Cite as

Tree-ring-based drought reconstruction in the Iberian Range (east of Spain) since 1694

  • Ernesto TejedorEmail author
  • Martín de Luis
  • José María Cuadrat
  • Jan Esper
  • Miguel Ángel Saz
Original Paper


Droughts are a recurrent phenomenon in the Mediterranean basin with negative consequences for society, economic activities, and natural systems. Nevertheless, the study of drought recurrence and severity in Spain has been limited so far due to the relatively short instrumental period. In this work, we present a reconstruction of the standardized precipitation index (SPI) for the Iberian Range. Growth variations and climatic signals within the network are assessed developing a correlation matrix and the data combined to a single chronology integrating 336 samples from 169 trees of five different pine species distributed throughout the province of Teruel. The new chronology, calibrated against regional instrumental climatic data, shows a high and stable correlation with the July SPI integrating moisture conditions over 12 months forming the basis for a 318-year drought reconstruction. The climate signal contained in this reconstruction is highly significant (p < 0.05) and spatially robust over the interior areas of Spain located above 1000 meters above sea level (masl). According to our SPI reconstruction, seven substantially dry and five wet periods are identified since the late seventeenth century considering ≥±1.76 standard deviations. Besides these, 36 drought and 28 pluvial years were identified. Some of these years, such as 1725, 1741, 1803, and 1879, are also revealed in other drought reconstructions in Romania and Turkey, suggesting that coherent larger-scale synoptic patterns drove these extreme deviations. Since regional drought deviations are also retained in historical documents, the tree-ring-based reconstruction presented here will allow us to cross-validate drought frequency and magnitude in a highly vulnerable region.


Dendroclimatology Drought SPI Reconstruction Iberian Range Spain 



This study was supported by the Spanish government (CGL2011-28255) and the government of Aragon throughout the “Program of research groups” (group Clima, Cambio Global y Sistemas Naturales, BOA 147 of 18-12-2002) and FEDER funds. Ernesto Tejedor is supported by the government of Aragon with a Ph.D. grant. Fieldwork was carried out in the province of Teruel; we are most grateful to its authorities for supporting the sampling campaigns. We are thankful to Klemen Novak, Edurne Martinez, Luis Alberto Longares, and Roberto Serrano for help during fieldwork. We thank Elaine Rowe for improving the English of this manuscript.


  1. Akkemik Ü, Daǧdeviren N, Aras A (2005) A preliminary reconstruction (A.D. 1635–2000) of spring precipitation using oak tree rings in the western Black Sea region of Turkey. Int J Biometeorol 49(5):297–302CrossRefGoogle Scholar
  2. Alberola A (1996) La percepción de la catástrofe: sequía e inundaciones en tierras valencianas durante la primera mitad del siglo XVIII. Revista de Historia Moderna 15:257–299Google Scholar
  3. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682CrossRefGoogle Scholar
  4. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124CrossRefGoogle Scholar
  5. Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year tree-ring proxy for alpine summer temperatures. Clim Dyn 25(2–3):141–153CrossRefGoogle Scholar
  6. Büntgen U, Frank D, Grudd H, Esper J (2008) Long-term summer temperature variations in the Pyrenees. Clim Dyn 31(6):615–631. doi: 10.1007/s00382-008-0390-x CrossRefGoogle Scholar
  7. Büntgen U, Brázdil R, Frank D, Esper J (2010) Three centuries of Slovakian drought dynamics. Clim Dyn 35(2):315–329. doi: 10.1007/s00382-009-0563-2 CrossRefGoogle Scholar
  8. Büntgen U, Brázdil R, Dobrovolný P, Trnka M, Kyncl T (2011) Five centuries of Southern Moravian drought variations revealed from living and historic tree rings. Theor Appl Climatol 105(1):167–180. doi: 10.1007/s00704-010-0381-9 CrossRefGoogle Scholar
  9. Büntgen U, Kyncl T, Ginzler C, Jacks DS, Esper J, Tegel W, Heussner KH, Kyncl J (2013) Filling the Eastern European gap in millennium-long temperature reconstructions. Proc Natl Acad Sci U S A 110(5):1773–1778. doi: 10.1073/pnas.1211485110 CrossRefGoogle Scholar
  10. Camarero JJ, Manzanedo RD, Sanchez-Salguero R, Navarro-Cerrillo RM (2013) Growth response to climate and drought change along an aridity gradient in the southernmost Pinus nigra relict forests. Ann For Sci 70(8):769–780CrossRefGoogle Scholar
  11. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. The Holocene 7:361–370CrossRefGoogle Scholar
  12. Cook ER, Briffa K, Shiyatov S, Mazepa V (1990) Tree-ring standardization and growth trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht, pp 104–162CrossRefGoogle Scholar
  13. Creus J, Puigdefabregas J (1982) Climatología histórica y dendrocronología de Pinus uncinata R. Cuad Investig Geográfica 2(2):17–30Google Scholar
  14. Creus J, Génova M, Fernandez Cancio A, Perez Antelo A (1992) New dendrochronologies for Spanish Mediterranean zone. Lundqua Rep 34:76–78Google Scholar
  15. Čufar K, de Luis M, Eckstein D, Kajfez-Bogataj L (2008) Reconstructing dry and wet summers in SE Slovenia from oak tree-ring series. Int J Biometeorol 52:607–615CrossRefGoogle Scholar
  16. De Castro M, Martín-Vide J, Alonso S (2005) El clima de España: pasado, presente y escenarios de clima para el siglo XXI. In: Moreno Rodriguez JM (ed) Evaluación preliminar de los impactos en España por efecto del cambio climático. Ministerio de Medio Ambiente, Madrid, pp 1–65Google Scholar
  17. de Luis M, Cufar K, Di Filippo A, Novak K, Papadopoulos A, Piovesan G, Rathgeber CBK, Raventós Josep, Saz MA, Smith KA (2013) Plasticity in dendroclimatic response across the distribution range of Aleppo pine (Pinus halepensis). PloS One 8(12):e83550Google Scholar
  18. Dorado Liñán I, Zorita E, González-Rouco JF, Heinrich I, Campello F, Muntán E, Andreu-Hayles L, Gutiérrez E (2014) Eight-hundred years of summer temperature variations in the southeast of the Iberian Peninsula reconstructed from tree rings. Clim Dyn 19 pGoogle Scholar
  19. Esper J, Frank D, Büntgen U, Verstege A, Luterbacher J, Xoplaki E (2007) Long-term drought severity variations in Morocco. Geophys Res Lett 34(17):L17702. doi: 10.1029/2007gl030844 CrossRefGoogle Scholar
  20. Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher J, Holzkämper S, Fischer N, Wagner S, Nievergelt D, Verstege A, Büntgen U (2012) Orbital forcing of tree-ring data. Nat Clim Chang 2:862–866CrossRefGoogle Scholar
  21. Esper J, Großjean J, Camarero JJ, García-Cervigón AI, Olano JM, González-Rouco JF, Domínguez-Castro F, Büntgen U (2014) Atlantic and Mediterranean synoptic drivers of central Spanish juniper growth. Theor Appl ClimatolGoogle Scholar
  22. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  23. Fritts HC, Guiot J, Gordon GA, Schweingruber FH (1990) Methods of calibration, verification, and reconstruction. In Methods of DendrocrhonologyGoogle Scholar
  24. Génova M (2012) Extreme pointer years in tree-ring records of Central Spain as evidence of climatic events and the eruption of the Huaynaputina Volcano (Peru, 1600 AD). Clim Past 8(2):751–764CrossRefGoogle Scholar
  25. Génova M, Fernández Cancio A, Creus J (1993) Diez series medias de anillos de crecimiento en los sistemas Carpetano e Ibérico. Investigación agraria. Sistemas y Recursos Forestales 2:151–172Google Scholar
  26. Gonzalez-Hidalgo JC, Brunetti M, de Luis M (2011) A new tool for monthly precipitation analysis in Spain: MOPREDAS database (monthly precipitation trends December 1945–November 2005). Int J Climatol 31:715–731CrossRefGoogle Scholar
  27. Guttman NB (1998) Comparing the palmer drought index and the standardized precipitation index. J Am Water Resour Assoc 34:113–121. doi: 10.1111/j.1752-1688.1998.tb05964.x CrossRefGoogle Scholar
  28. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int J Climatol 34(3):623–642CrossRefGoogle Scholar
  29. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  30. IPCC (2007) In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 996Google Scholar
  31. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi: 10.1017/CBO9781107415324
  32. Jones PD, Bradley RS (1992) Climatic variations over the last 500 years. In: Bradley RS, Jones PD (eds) Climate since AD 1500. Routledge, London and New York, pp 649–65Google Scholar
  33. Larsson LA (2012) CoRecorder&CDendro program. Cybis Elektronik & Data AB. Version 7.6Google Scholar
  34. Levanič T, Popa I, Poljanšek S, Nechita C (2013) A 323-year long reconstruction of drought for SW Romania based on black pine (Pinus Nigra) tree-ring widths. Int J Biometeorol 57(5):703–714CrossRefGoogle Scholar
  35. Manrique E, Fernandez-Cancio A (2000) Extreme climatic events in dendroclimatic reconstructions from Spain. Clim Chang 44(1–2):123–138Google Scholar
  36. Martín-Benito D, Del Río M, Cañellas I (2010) Black pine (Pinus nigra Arn.) growth divergence along a latitudinal gradient in Western Mediterranean mountains. Annals of Forest Science, 67 (4)Google Scholar
  37. Martín-Vide J, Vallvé MB (1995) The use of rogation ceremony records in climatic reconstruction: a case study from Catalonia (Spain). Clim Chang 30(2):201–221CrossRefGoogle Scholar
  38. McKee TB, Doesken NJ, Kliest J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22. American Meteorological Society, Boston, MA, USA, pp 179–184Google Scholar
  39. Nesje A, Dahl SO (2003) The 'Little Ice Age' - Only temperature? The Holocene 13(1):139–145CrossRefGoogle Scholar
  40. Nicault A, Alleaume S, Brewer S, Carrer M, Nola P, Guiot J (2008) Mediterranean drought fluctuation during the last 500 years based on tree-ring data. Clim Dyn 31(2):227–245. doi: 10.1007/s00382-007-0349-3 CrossRefGoogle Scholar
  41. Palmer WC (1965) Meteorological drought. Research Paper 45, US Dept. Commerce, WashingtonGoogle Scholar
  42. Pasho E, Camarero JJ, de Luis M, Vicente-Serrano SM (2011) Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agric For Meteorol 151(12):1800–1811CrossRefGoogle Scholar
  43. Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26(4):387–405. doi: 10.1007/s00382-005-0090-8 CrossRefGoogle Scholar
  44. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  45. Randall DA, Wood RA et al (2007) Climate models and their evaluation. In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change [Solomon S et al (eds)]. Cambridge University Press, Cambridge, UK and New York, NYGoogle Scholar
  46. Redmond KT (2002) The depiction of drought Bull. Am Meteorol Soc 83:1143–1147CrossRefGoogle Scholar
  47. Rinn F (2005) TSAPWinTM – Time series analysis and presentation for dendrochronology and related applications, Version 4.69Google Scholar
  48. Rodrigo FS, Esteban-Parra MJ, Pozo-Vázquez D, Castro-Díez Y (1999) A 500-year precipitation record in Southern Spain. Int J Climatol 19(11):1233–1253CrossRefGoogle Scholar
  49. Saz MA (2003) Análisis de la evolución del clima en la mitad septentrional de España desde el siglo XV a partir de series dendroclimáticas. Servicio de Publicaciones de la Universidad de Zaragoza, Zaragoza, 1105 pp Google Scholar
  50. Seneviratne SI et al (2012) Changes in climate extremes and their impacts on the natural physical environment IPCC special report: managing the risks of extreme events and disasters to advance climate change adaptation ed CB Field et al. (Cambridge: Cambridge University Press) pp 109–230Google Scholar
  51. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating, 2nd edn. The University of Arizona Press, TucsonGoogle Scholar
  52. Touchan R, Funkhouser G, Hughes M, Erkan N (2005) Standardized precipitation index reconstructed from Turkish tree-ring widths. Clim Chang 72(3):339–353. doi: 10.1007/s10584-005-5358-9 CrossRefGoogle Scholar
  53. Touchan R, Akkemik Ü, Hughes MK, Erkan N (2007) May-June precipitation reconstruction of southwestern Anatolia, Turkey during the last 900 years from tree rings. Quat Res 68(2):196–202CrossRefGoogle Scholar
  54. Türkes M (1996) Meteorological drought in Turkey: a historical perspective. 1930–93. Drought Netw News 8:17–21Google Scholar
  55. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718CrossRefGoogle Scholar
  56. Vicente-Serrano SM, Cuadrat-Prats JM (2007) Trends in drought intensity and variability in the Middle Ebro Valley (NE Spain) during the second half of the twentieth century. Theor Appl Climatol 88:247–258Google Scholar
  57. Vicente-Serrano SM, López-Moreno JI, Beguería S, Lorenzo-Lacruz J, Morán E, Azorín-Molina C (2011) Effects of warming processes on droughts and water resources in the NW Iberian Peninsula (1930–2006). Clim Res 31:2102–2114Google Scholar
  58. Vicente-Serrano SM, Lopez-Moreno JI, Beguería S, Lorenzo-Lacruz J, Sanchez-Lorenzo A, García Ruiz JM, Azorin-Molina C, Morán-Tejeda E, Revuelto J, Trigo R, Coelho F, Espejo F (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9 (4), art. no. 044001Google Scholar
  59. Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought severity index. J Clim 17:2335–2351CrossRefGoogle Scholar
  60. Wigley TML, Briffa K, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar

Copyright information

© ISB 2015

Authors and Affiliations

  1. 1.Department of GeographyUniversity of ZaragozaZaragozaSpain
  2. 2.Department of GeographyJohannes Gutenberg UniversityMainzGermany

Personalised recommendations