International Journal of Biometeorology

, Volume 60, Issue 3, pp 351–359 | Cite as

Evaluation of meteorological and epidemiological characteristics of fatal pulmonary embolism

  • Klára Törő
  • Rita Pongrácz
  • Judit Bartholy
  • Aletta Váradi-T
  • Boglárka Marcsa
  • Brigitta Szilágyi
  • Attila Lovas
  • György Dunay
  • Péter Sótonyi
Original Paper


The objective of the present study was to identify risk factors among epidemiological factors and meteorological conditions in connection with fatal pulmonary embolism. Information was collected from forensic autopsy records in sudden unexpected death cases where pulmonary embolism was the exact cause of death between 2001 and 2010 in Budapest. Meteorological parameters were detected during the investigated period. Gender, age, manner of death, cause of death, place of death, post-mortem pathomorphological changes and daily meteorological conditions (i.e. daily mean temperature and atmospheric pressure) were examined. We detected that the number of registered pulmonary embolism (No 467, 211 male) follows power law in time regardless of the manner of death. We first described that the number of registered fatal pulmonary embolism up to the nth day can be expressed as Y(n) = α ⋅ n β where Y denotes the number of fatal pulmonary embolisms up to the nth day and α > 0 and β > 1 are model parameters. We found that there is a definite link between the cold temperature and the increasing incidence of fatal pulmonary embolism. Cold temperature and the change of air pressure appear to be predisposing factors for fatal pulmonary embolism. Meteorological parameters should have provided additional information about the predisposing factors of thromboembolism.


Pulmonary embolism Venous thrombosis Meteorological parameters Medico-legal investigation Power law relation Poisson point process Bayesian estimation 


  1. Bartholomew JR, Schaffer JL, McCormick GF (2011) Air travel and venous thromboembolism: minimizing the risk. Cleve Clin J Med 78:111–120CrossRefGoogle Scholar
  2. Bilora F, Manfredini R, Petrobelli F, Vettore G, Boccioletti V, Pomerri F (2001) Chronobiology of non fatal pulmonary thromboembolism. Panminerva Med 43:7–10Google Scholar
  3. Boulay F, Berthier F, Schoukroun G, Raybaut C, Gendreike Y, Blaive B (2001) Seasonal variations in hospital admission for deep vein thrombosis and pulmonary embolism: analysis of discharge data. BMJ 323:601–602CrossRefGoogle Scholar
  4. Braga ALF, Zanobetti A, Schwartz J (2002) The effect of weather or respiratory and cardiovascular deaths in 12 U.S. cities. Environ Health Perspect 110:859–863CrossRefGoogle Scholar
  5. Cagle A, Hubbard R (2005) Cold-related cardiac mortality in King County, Washington, USA 1980-2001. Ann Hum Biol 32:525–537CrossRefGoogle Scholar
  6. Clark AR, Burrowes KS, Tawhai MH (2011) The impact of micro-embolism size on haemodynamic changes in the pulmonary micro-circulation. Respir Physiol Neurobiol 175:365–374CrossRefGoogle Scholar
  7. Clauss R, Mayes J, Hilton P, Lawrenson R (2005) The influence of weather and environment on pulmonary embolism: pollutants and fossil fuels. Med Hypotheses 64:1198–1201CrossRefGoogle Scholar
  8. Cox DR (1955) Some Statistical Methods Connected with Series of Events. J R Stat Soc 17:129–164Google Scholar
  9. Dales RE, Cakmak S, Vidal CB (2010) Air pollution and hospitalization for venous thromboembolic disease in Chile. J Thromb Haemost 8:669–674CrossRefGoogle Scholar
  10. de Takats G, Mayne A, Petersen WF (1940) The meteorological factor in pulmonary embolisms. Surgery 7:819–827Google Scholar
  11. Dentali F, Manfredini R, Ageno W (2009) Seasonal variability of venous thromboembolism. Curr Opin Pulm Med 15:403–407CrossRefGoogle Scholar
  12. Dentali F, Ageno W, Rancan E, Donati AV, Galli L, Squizzato A, Venco A, Mannucci PM, Manfredini R (2011) Seasonal and monthly variability in the incidence of venous thromboembolism. A systematic review and a meta-analysis of the literature. Thromb Haemost 106:439–447CrossRefGoogle Scholar
  13. Gallerani M, Boari B, de Toma D, Salmi R, Manfredini R (2004) Seasonal variation in the occurrence of deep vein thrombosis. Med Sci Monit 10:CR191–CR196Google Scholar
  14. Gallerani M, Boari B, Smolensky MH, Salmi R, Fabbri D, Contato E, Manfredini R (2007) Seasonal variation in occurrence of pulmonary embolism: analysis of the database of the Emilia-Romagna region, Italy. Chronobiol Int 24:143–160CrossRefGoogle Scholar
  15. Gong DY, Liu XF, Huang FJ (2013) Clinical feature analysis of fatal pulmonary thromboembolism: experiences from 41 autopsy-confirmed cases. Eur Rev Med Pharmacol Sci 17:701–706Google Scholar
  16. Gyllerup S (2000) Cold climate and coronary mortality in Sweden. Int J Circumpolar Health 59:160–163Google Scholar
  17. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113, D20119CrossRefGoogle Scholar
  18. Jenkins JS, Michael P (2014) Deep Venous Thrombosis: An Interventionalist's Approach. Ochsner J 14(4):633–640Google Scholar
  19. Kearon C, Akl EA (2014) Duration of anticoagulant therapy for deep vein thrombosis and pulmonary embolism. Blood 123(12):1794–1801CrossRefGoogle Scholar
  20. Konstantinides SV, Torbicki A, Agnelli G, Danchin N, Fitzmaurice D, Galiè N et al (2014) 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 35(43):3033–3069CrossRefGoogle Scholar
  21. Kosacka U, Kiluk IE, Milewski R, Tycińska AM, Jasiewicz M, Sobkowicz B (2015) Variation in the incidence of pulmonary embolism and related mortality depending on the season and day of the week. Pol Arch Med Wewn 125(1-2):92–94Google Scholar
  22. Krumin M, Shoham S (2009) Generation of Spike Trains with Controlled Auto- and Cross-Correlation Functions. Neural Comput 21:1642–1664CrossRefGoogle Scholar
  23. Lin P, Gill JR (2009) Delayed homicides and the proximate cause. Am J Forensic Med Pathol 30:354–357CrossRefGoogle Scholar
  24. Lucena J, Rico A, Vázquez R, Marín R, Martínez C, Salguero M, Miguel L (2009) Pulmonary embolism and sudden-unexpected death: prospective study on 2477 forensic autopsies performed at the Institute of Legal Medicine in Seville. J Forensic Legal Med 16:196–201CrossRefGoogle Scholar
  25. Manfredini R, Imberti D, Gallerani M, Verso M, Pistelli R, Ageno W, Agnelli G (2009) Seasonal variation in the occurrence of venous thromboembolism: data from the MASTER Registry. Clin Appl Thromb Hemost 15:309–315CrossRefGoogle Scholar
  26. Manfredini R, Gallerani M, Salmi R, Dentali F, Ageno W (2011) Winter and venous thromboembolism: a dangerous liaison? Futur Cardiol 6:717–719CrossRefGoogle Scholar
  27. McMichael A, Woodruff R, Hales S (2006) Climate change and human health: present and future risks. Lancet 367:859–869CrossRefGoogle Scholar
  28. Menaker J, Stein DM, Scalea TM (2007) Incidence of early pulmonary embolism after injury. J Trauma 63:620–624CrossRefGoogle Scholar
  29. Menaker J, Stein DM, Scalea TM (2009) Pulmonary embolism after injury: more common than we think? J Trauma 67:1244–1249CrossRefGoogle Scholar
  30. Meral M, Mirici A, Aslan S, Akgun M, Kaynar H, Saglam L, Gorguner M (2005) Barometric pressure and the incidence of pulmonary embolism. Chest 128:2190–2194CrossRefGoogle Scholar
  31. Murayama M, Kumaroo KK (1986) Inhibitors of ex vivo aggregation of human platelets induced by decompression during reduced barometric pressure. Thromb Res 42:511–516CrossRefGoogle Scholar
  32. Nimako K, Poloniecki J, Draper A, Rahman T (2012) Seasonal variability and meteorological factors: retrospective study of the incidence of pulmonary embolism from a large United Kingdom teaching hospital. Respir Care 57:1267–1272CrossRefGoogle Scholar
  33. Orlik J, McVey J (2011) Deep vein thrombosis and bilateral pulmonary embolism following minor trauma to the popliteal fossa: could this have been avoided? CJEM 13:122–126Google Scholar
  34. Öztuna F, Ozsu S, Topbaş M, Bülbül Y, Koşucu P, Ozlü T (2008) Meteorological parameters and seasonal variations in pulmonary thromboembolism. Am J Emerg Med 26:1035–1041CrossRefGoogle Scholar
  35. Rosenfeld HE, Tsokos M, Byard RW (2012) The association between body mass index and pulmonary thromboembolism in an autopsy population. J Forensic Sci 57:1336–1338CrossRefGoogle Scholar
  36. Soria JM, Morange PE, Vila J, Souto JC, Moyano M, Trégouët DA, Mateo J, Saut N, Salas E, Elosua R (2014) Multilocus genetic risk scores for venous thromboembolism risk assessment. J Am Heart Assoc 5, e001060. doi: 10.1161/JAHA.114.001060 CrossRefGoogle Scholar
  37. Staskiewicz G, Torres K, Czekajska-Chehab E, Pachowicz M, Torres A, Radej S, Opielak G, Maciejewski R, Drop A (2010) Low atmospheric pressure and humidity are related with more frequent pulmonary embolism episodes in male patients. Ann Agric Environ Med 17:163–167Google Scholar
  38. Staskiewicz G, Czekajska-Chehab E, Przegalinski J, Maciejewski M, Pachowicz M, Drop A (2011) Meteorological parameters and severity of acute pulmonary embolism episodes. Ann Agric Environ Med 18:127–130Google Scholar
  39. Stein PD, Kayali F, Olson RE (2004) Analysis of occurrence of venous thromboembolic disease in the four seasons. Am J Cardiol 93:511–513CrossRefGoogle Scholar
  40. Stein PD, Kayali F, Beemath A, Skaf E, Alnas M, Alesh I, Olson RE (2005) Mortality from acute pulmonary embolism according to season. Chest 128:3156–3158CrossRefGoogle Scholar
  41. Sumukadas D, Witham M, Struthers A, McMurdo M (2009) Day length and weather conditions profoundly affect physical activity levels in older functionally impaired people. J Epidemiol Community Health 63:305–309CrossRefGoogle Scholar
  42. van den Besselaar EJM, Haylock MR, van der Schrier G, Klein Tank AMG (2011) A European Daily High-resolution Observational Gridded Data set of Sea Level Pressure. J Geophys Res 116, D11110CrossRefGoogle Scholar

Copyright information

© @ European Union 2015

Authors and Affiliations

  • Klára Törő
    • 1
  • Rita Pongrácz
    • 2
  • Judit Bartholy
    • 2
  • Aletta Váradi-T
    • 1
  • Boglárka Marcsa
    • 1
  • Brigitta Szilágyi
    • 3
  • Attila Lovas
    • 3
  • György Dunay
    • 1
  • Péter Sótonyi
    • 4
  1. 1.Department of Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
  2. 2.Department of MeteorologyEötvös Loránd UniversityBudapestHungary
  3. 3.Department of GeometryBudapest University of Technology and EconomicsBudapestHungary
  4. 4.Department of Vascular SurgerySemmelweis UniversityBudapestHungary

Personalised recommendations