Advertisement

International Journal of Biometeorology

, Volume 60, Issue 1, pp 139–150 | Cite as

Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia

  • Biljana Basarin
  • Tin Lukić
  • Andreas Matzarakis
Original Paper

Abstract

Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949–2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.

Keywords

PET Serbia Cold waves Heat waves Novi Sad 

Notes

Acknowledgments

This research was supported by Project 176020 of the Serbian Ministry of Education, Science and Technological Development.

References

  1. Aylin P, Morris S, Wakefield J, Grossinho A, Jaru L, Elliott P (2001) Temperature, housing, deprivation and their relationship to excess winter mortality in Great Britain, 1986–1996. Int J Epidemiol 30:1100–1108. doi: 10.1093/ije/30.5.1100 CrossRefGoogle Scholar
  2. Ballester F, Michelozzi P, Iniguez C (2003) Weather, climate, and public health. J Epidemiol Community Health 57:759–760CrossRefGoogle Scholar
  3. Ballester J, Giorgi F, Rodó J (2010) Changes in European temperature extremes can be predicted from changes in PDF central statistics: a letter. Clim Chang 98:277–284CrossRefGoogle Scholar
  4. Basarin B, Kržič A, Lazić L, Lukić T, Đorđević J, Janićijević Petrović B, Ćopić S, Matić D, Hrnjak I, Matzarakis A (2014) Evaluation of bioclimate conditions in two special nature reserves in Vojvodina (Northern Serbia). Carpathian J Earth Environ Sci 9:93–108Google Scholar
  5. Basu R, Samet JM (2002) Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev 24:190–202CrossRefGoogle Scholar
  6. Beniston M, Diaz H (2004) The 2003 heat wave as an example of summers in a greenhouse climate? Observations and climate model simulations for Basel, Switzerland. Glob Planet Chang 44:73–81CrossRefGoogle Scholar
  7. Boccolari M, Malmusi S (2013) Changes in temperature and precipitation extremes observed in Modena, Italy. Atmos Res 122:16–31CrossRefGoogle Scholar
  8. Bøkenes L, Alexandersen TE, Østerud B, Tveita T, Mercer JB (2000) Physiological and hematological responses to cold exposure in the elderly. Int J Circumpolar Health 59:216–221Google Scholar
  9. Bøkenes L, Alexandersen TE, Tveita T, Osterud B, Mercer JB (2004) Physiological and hematological responses to cold exposure in young subjects. Int J Circumpolar Health 63:115–128CrossRefGoogle Scholar
  10. Bouchama A, Knochel JP (2002) Heat stroke. N Engl J Med 346:1978–1988CrossRefGoogle Scholar
  11. Brown SJ, Caesar J, Ferro AT (2008) Global changes in daily extreme temperatures since 1950. J Geophys Res Atmos 113. doi: 10.1029/2006JD008091
  12. Christidis N, Stott P, Brown S, Hegerl G, Caesar J (2005) Detection of changes in temperature extremes during the second half of the 20th century. Geophys Res Lett 32. doi: 10.1029/2005GL023885
  13. Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European heat waves since 1880. J Geophys Res Atmos 112. doi: 10.1029/2007JD008510
  14. Dolney TJ, Sheridan SC (2006) The relationship between extreme heat and ambulance response calls for the city of Toronto, Ontario, Canada. Environ Res 101:94–103CrossRefGoogle Scholar
  15. Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425CrossRefGoogle Scholar
  16. Fanger PO (1972) Thermal comfort: analysis and applications in environmental engineering. McGraw-Hill, New YorkGoogle Scholar
  17. Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, Clavel J, Jougla E, Hémon D (2006) Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health 80:16–24CrossRefGoogle Scholar
  18. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212CrossRefGoogle Scholar
  19. Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold, New YorkGoogle Scholar
  20. Giles BD, Balafoutis CJ (1990) The Greek heat waves of 1987 and 1988. Int J Climatol 10:505–517CrossRefGoogle Scholar
  21. Giles BD, Balafoutis C, Maheras P (1990) Too hot for comfort: the heat waves in Greece in 1987 and 1988. Int J Biometeorol 34:98–104CrossRefGoogle Scholar
  22. Hajat S, Kosatky T (2010) Heat-related mortality: a review and exploration of heterogeneity. J Epidemiol Community Health 64:753–760CrossRefGoogle Scholar
  23. Hajat S, Kovats RS, Atkinson RW, Haines A (2002) Impact of hot temperatures on death in London: a time series approach. J Epidemiol Community Health 56:367–372CrossRefGoogle Scholar
  24. Hajat S, Kovats RS, Lachowycz K (2007) Heat-related and cold-related deaths in England and Wales: who is at risk? Occup Environ Med 64:93–100CrossRefGoogle Scholar
  25. Heino R, Brázdil R, Førland E, Tuomenvirta H, Alexandersson H, Beniston M, Pfister C, Rebetez M, Rosenhagen G, Rösner S, Wibig J (1999) Progress in the study of climate extremes in northern and central Europe. In: Thomas KR, Nicholls N, Ghazi A (eds) Weather and climate extremes: changes, variations and a perspective from the insurance industry. Kluwer Academic, DordrechtGoogle Scholar
  26. Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75CrossRefGoogle Scholar
  27. Jacob D (2001) A note on the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRefGoogle Scholar
  28. Jacob D, Bäring L, Christensen OB et al (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Chang 81:31–52CrossRefGoogle Scholar
  29. Jendritzky G, Tinz B (2009) The thermal environment of the human being on the global scale. In: Kjellström T (ed) Heat, work and health: implications of climate change. Global Health Action 2:1–12Google Scholar
  30. Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428CrossRefGoogle Scholar
  31. Kalkstein LS (2000) Saving lives during extreme summer weather. BMJ 321:650–651CrossRefGoogle Scholar
  32. Kalkstein LS, Sheridan SC, Kalkstein AJ (2009) Heat/health warning systems: development, implementation, and intervention activities. In: Ebi KL et al. (eds) Biometeorology for adaptation to climate variability and change, 33 © Springer Science + Business MediaGoogle Scholar
  33. Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723CrossRefGoogle Scholar
  34. Klein Tank AMG, Können GP (2003) Trends indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680CrossRefGoogle Scholar
  35. Klein Tank AMG, Wijngaard JB, Konnen GP et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453CrossRefGoogle Scholar
  36. Kodra E, Steinhaeuser K, Ganguly AR (2011) Persisting cold extremes under 21st-century warming scenarios. Geophys Res Lett 38. doi: 10.1029/2011GL047103
  37. Koppe C (2005) Gesundheitsrelevante Bewertung von thermischer Belastung unter Berücksichtigung der kurzfristigen Anpassung der Bevölkerung an die lokalen Witterungsverhältnisse. Berichte des Deutschen Wetterdienstes Nr. 226Google Scholar
  38. Koppe C, Jendritzky G (2005) Inclusion of short-term adaption to thermal stresses in a heat load warning procedure. Meteorol Z 14:271–278CrossRefGoogle Scholar
  39. Kržič A, Tošić I, Djurdjević V, Veljović K, Rajković B (2011) Changes in climate indices for Serbia according to the SRES-A1B and -A2. Clim Res. doi: 10.3354/cr01008 Google Scholar
  40. Kuglitsch FG, Toreti A, Xoplaki E, Della-Marta PM, Zerefos CS, Türkeş M, Luterbacher J (2010) Heat wave changes in the eastern Mediterranean since 1960. Geophys Res Lett 37. doi: 10.1029/2009GL041841
  41. Kyselý J (2002) Probability estimates of extreme temperature events: stochastic modelling approach vs. extreme value distributions. Stud Geophys Geod 46:93–112CrossRefGoogle Scholar
  42. Kyselý J (2004) Mortality and displaced mortality during heat waves in the Czech Republic. Int J Biometeorol 49:91–97CrossRefGoogle Scholar
  43. Lin TP, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290CrossRefGoogle Scholar
  44. Makrogiannis T, Balafoutis Ch, Pytharoulis I (2008) The Heat Waves over Balkans as an indicator of the climate change: a case study on August 2006. In: Maheras P, Zanis P, Anagnostopoulou C et al. (eds) Proceedings of the 9th Conference of Meteorology, Climatology and Atmospheric Physics. Thessaloniki, Greece 417–423Google Scholar
  45. Matzarakis A, Endler C (2010) Climate change and thermal bioclimate in cities: impacts and options for adaptation in Freiburg, Germany. Int J Biometeorol 54:479–483CrossRefGoogle Scholar
  46. Matzarakis A, Mayer H (1991) The extreme heat wave in Athens July 1987 from the point of view of human biometeorology. Atmos Environ 25:203–211CrossRefGoogle Scholar
  47. Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO News 18:7–10Google Scholar
  48. Matzarakis A, Mayer H (1997) Heat stress in Greece. Int J Biometeorol 41:34–39CrossRefGoogle Scholar
  49. Matzarakis A, Nastos PT (2011) Human-biometeorological assessment of heat waves in Athens. Theor Appl Climatol 105:99–106CrossRefGoogle Scholar
  50. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84CrossRefGoogle Scholar
  51. Matzarakis A, Rutz F, Mayer H (2007) Modelling Radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334CrossRefGoogle Scholar
  52. Matzarakis A, Muthers S, Koch E (2011) Human biometeorological evaluation of heat-related mortality in Vienna. Theor Appl Climatol 105:1–10CrossRefGoogle Scholar
  53. Matzarakis A, Rammelberg J, Junk J (2013) Assessment of thermal bioclimate and tourism climate potential for central Europe—the example of Luxembourg. Theor Appl Climatol 114:193–202CrossRefGoogle Scholar
  54. Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49CrossRefGoogle Scholar
  55. Meehl GA, Tebaldi C, Nychka D (2004) Changes in frost days in simulations of twenty-first century climate. Clim Dyn 23:495–511. doi: 10.1007/s00382-004-0442-9 CrossRefGoogle Scholar
  56. Muthers S, Matzarakis A, Koch E (2010) Climate change and mortality in Vienna—a human biometeorological analysis based on regional climate modeling. Int J Environ Res Public Health 7:2965–2977CrossRefGoogle Scholar
  57. Nastos PT, Matzarakis A (2012) The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theor Appl Climatol 108:591–599CrossRefGoogle Scholar
  58. Pantavou K, Theoharatos G, Nikolopoulos G, Katavoutas G, Asimakopoulos D (2008) Evaluation of thermal discomfort in Athens territory and its effect on the daily number of recorded patients at hospitals’ emergency rooms. Int J Biometeorol 52:773–778CrossRefGoogle Scholar
  59. Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81:443–450CrossRefGoogle Scholar
  60. Peterson TC, Heim RR Jr, Hirsch R et al (2013) Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull Am Meteorol Soc 94:821–834CrossRefGoogle Scholar
  61. Pickup J, de Dear R (2000) An outdoor thermal comfort index (OUT_SET*)—part I—the model and its assumptions. In: de Dear R, Kalma J, Oke T, Auliciems A (ed) Biometeorology and urban climatology at the turn of the millennium. Selected papers from the Conference ICB-ICUC’99 (Sydney, 8–12 Nov. 1999). WMO, Geneva, WCASP 50:279–283Google Scholar
  62. Räisänen J, Ylhäisi JS (2011) Cold months in a warming climate. Geophys Res Lett 38, L22704. doi: 10.1029/2011GL049758 CrossRefGoogle Scholar
  63. Ramos AM, Trigo RM, Santo FE (2011) Evolution of extreme temperatures over Portugal: recent changes and future scenarios. Clim Res 48:177–192CrossRefGoogle Scholar
  64. Robeson SM (2004) Trends in time‐varying percentiles of daily minimum and maximum temperature over North America. Geophys Res Lett 31, L04203. doi: 10.1029/2003GL019019 CrossRefGoogle Scholar
  65. Robinson JP (2001) On the definition of a heat wave. J Appl Meteorol 40:762–775CrossRefGoogle Scholar
  66. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger M, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336CrossRefGoogle Scholar
  67. Staiger H, Laschewski G, Grätz A (2012) The perceived temperature—a versatile index for the assessment of the human thermal environment. Scientific basics. Part A. Int J Biometeorol 56:165–176. doi: 10.1007/S00484-011-0409-6 CrossRefGoogle Scholar
  68. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heat wave of 2003. Nature 432:610–614CrossRefGoogle Scholar
  69. Thorsson S, Lindberg F, Eliasson I, Holmer B (2007) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int J Climatol 27:1983–1993CrossRefGoogle Scholar
  70. Unal YS, Tan E, Mentes SS (2013) Summer heat waves over western Turkey between 1965 and 2006. Theor Appl Climatol 112:339–350CrossRefGoogle Scholar
  71. Unkašević M, Tošić I (2009) An analysis of heat waves in Serbia. Glob Planet Chang 65:17–26. doi: 10.1016/j.gloplacha.2008.10.009 CrossRefGoogle Scholar
  72. Unkašević M, Tošić I (2011) The maximum temperatures and heat waves in Serbia during the summer of 2007. Clim Chang 108:207–223CrossRefGoogle Scholar
  73. Unkašević M, Tošić I (2013) Trends in temperature indices over Serbia: relationships to large-scale circulation patterns. Int J Climatol 33:3152–3161. doi: 10.1002/joc.3652 CrossRefGoogle Scholar
  74. Unkašević M, Tošić I (2014) Seasonal analysis of cold and heat waves in Serbia during the period 1949–2012. Theor Appl Climatol. doi: 10.1007/s00704-014-1154-7 Google Scholar
  75. Vavrus SJ, Walsh JE, Chapman WL, Portis D (2006) The behavior of extreme cold air outbreaks under greenhouse warming. Int J Climatol 26:1133–1147CrossRefGoogle Scholar
  76. Wergen G, Krug J (2010) Record-breaking temperatures reveal a warming climate. EPL 92:30008. doi: 10.1209/0295-5075/92/30008 CrossRefGoogle Scholar
  77. Wijngaard JB, Klein Tank AMG, Konnen GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692CrossRefGoogle Scholar
  78. Wright W (2012) Calculation of the climate normals: proposal for a dual system. Meeting of the Commission for Climatology Expert Team on Climate Services Information System (Et‐Csis): Annex 6:38–40Google Scholar
  79. Yan Z, Jones PD, Davies TD, Moberg A, Bergström H, Camuffo D, Cocheo C, Maugeri M, Demarée GR, Verhoeve T, Thoen E, Barriendos M, Rodríguez R, Martín-Vide J, Yang C (2002) Trends of extreme temperatures in Europe and China based on daily observations. Clim Chang 53:355–392CrossRefGoogle Scholar
  80. Zaninović K, Matzarakis A (2009) The bioclimatological leaflet as a means conveying climatological information to tourists and the tourism industry. Int J Biometeorol 53:369–374CrossRefGoogle Scholar
  81. Zaninović K, Matzarakis A (2014) Impact of heat waves on mortality in Croatia. Int J Biometeorol 58:1135–1145. doi: 10.1007/s00484-013-0706-3 CrossRefGoogle Scholar

Copyright information

© ISB 2015

Authors and Affiliations

  • Biljana Basarin
    • 1
  • Tin Lukić
    • 1
  • Andreas Matzarakis
    • 2
  1. 1.Chair of Physical Geography, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Albert-Ludwigs-Universität FreiburgFreiburg im BreisgauGermany

Personalised recommendations