International Journal of Biometeorology

, Volume 59, Issue 11, pp 1567–1575 | Cite as

Shrubs tracing sea surface temperature—Calluna vulgaris on the Faroe Islands

  • Ilka Beil
  • Allan Buras
  • Martin Hallinger
  • Marko Smiljanić
  • Martin Wilmking
Original Paper

Abstract

The climate of Central and Northern Europe is highly influenced by the North Atlantic Ocean due to heat transfer from lower latitudes. Detailed knowledge about spatio-temporal variability of sea surface temperature (SST) in that region is thus of high interest for climate and environmental research. Because of the close relations between ocean and coastal climate and the climate sensitivity of plant growth, annual rings of woody plants in coastal regions might be used as a proxy for SST. We show here for the first time the proxy potential of the common and widespread evergreen dwarf shrub Calluna vulgaris (heather), using the Faroe Islands as our case study. Despite its small and irregular ring structure, the species seems suitable for dendroecological investigations. Ring width showed high and significant correlations with summer and winter air temperatures and SST. The C. vulgaris chronology from the Faroe Islands, placed directly within the North Atlantic Current, clearly reflects variations in summer SSTs over an area between Iceland and Scotland. Utilising shrubs like C. vulgaris as easy accessible and annually resolved proxies offers an interesting possibility for reconstruction of the coupled climate-ocean system at high latitudes.

Keywords

Climate proxy Serial sectioning Dendrochronology Nordic Seas SST Oceanography 

References

  1. Anchukaitis KJ, Taylor MJ, Martin-Fernandez J, Pons D, Dell M, Chopp C, Castellanos EJ (2013) Annual chronology and climate response in Abies guatemalensis Rehder (Pinaceae) in Central America. Holocene 23(2):270–277. doi:10.1177/0959683612455548 CrossRefGoogle Scholar
  2. Babst F, Poulter B, Trouet V, Tan K, Neuwirth B, Wilson R, Carrer M, Grabner M, Tegel W, Levanic T, Panayotov M, Urbinati C, Bouriaud O, Ciais P, Frank D (2013) Site- and species-specific responses of forest growth to climate across the European continent. Glob Ecol Biogeogr 22(6):706–717. doi:10.1111/geb.12023 CrossRefGoogle Scholar
  3. Bär A, Bräuning A, Löffler J (2006) Dendroecology of dwarf shrubs in the high mountains of Norway—a methodological approach. Dendrochronologia 24(1):17–27. doi:10.1016/j.dendro.2006.05.001 CrossRefGoogle Scholar
  4. Black BA, Copenheaver CA, Frank DC, Stuckey MJ, Kormanyos RE (2009) Multi-proxy reconstructions of northeastern Pacific sea surface temperature data from trees and Pacific geoduck. Palaeogeogr Palaeoclimatol Palaeoecol 278(1–4):40–47. doi:10.1016/j.palaeo.2009.04.010 CrossRefGoogle Scholar
  5. Blok D, Sass-Klaassen U, Schaepman-Strub G, Heijmans MMPD, Sauren P, Berendse F (2011) What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 8(5):1169–1179. doi:10.5194/bg-8-1169-2011 CrossRefGoogle Scholar
  6. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26(2):115–124. doi:10.1016/j.dendro.2008.01.002 CrossRefGoogle Scholar
  7. Buras A, Hallinger M, Wilmking M (2012) Can shrubs help to reconstruct historical glacier retreats? Environ Res Lett 7(4):44031. doi:10.1088/1748-9326/7/4/044031 CrossRefGoogle Scholar
  8. Canty A, Ripley B (2012) boot: Bootstrap R (S-Plus) FunctionsGoogle Scholar
  9. Cappelen J, Laursen EV (1998) The climate of the Faroe Islands—with climatological standard normals, 1961–1990. Technical Report 98–14Google Scholar
  10. Cappelen J, Laursen EV, Jørgensen PV, Kern-Hansen C (2011). DMI Monthly Climate Data Collection 1768–2010, Denmark, The Faroe Islands and Greenland. Technical Report 11–05. www.dmi.dk/dmi/tr11-05
  11. Carrer M (2011) Individualistic and time-varying tree-ring growth to climate sensitivity. PLoS ONE 6(7):e22813. doi:10.1371/journal.pone.0022813 CrossRefGoogle Scholar
  12. Cook ER, Kairiūkštis L (eds) (1990) Methods of dendrochronology. Applications in the environmental science. Kluwer Academic Publishers; International Institute for Applied Systems Analysis, Dordrecht, Netherlands, Boston, [S.l.]Google Scholar
  13. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardization forest-interior tree-ring width series for dendroclimatic studie. Tree-Ring Bull 41(45–53)Google Scholar
  14. Crawford RM (2000) Ecological hazards of oceanic environments. Tansley Review No. 114. New Phytol 147(2):257–281. doi:10.1046/j.1469-8137.2000.00705.x CrossRefGoogle Scholar
  15. Cunningham LK, Austin WE, Knudsen KL, Eiriksson J, Scourse JD, Wanamaker AD, Butler PG, Cage AG, Richter T, Husum K, Hald M, Andersson C, Zorita E, Linderholm HW, Gunnarson BE, Sicre M, Sejrup HP, Jiang H, Wilson RJ (2013) Reconstructions of surface ocean conditions from the northeast Atlantic and Nordic seas during the last millennium. The Holocene 23(7):921–935. doi:10.1177/0959683613479677 CrossRefGoogle Scholar
  16. D’Arrigo R, Buckley B, Kaplan S, Woollett J (2003) Interannual to multidecadal modes of Labrador climate variability inferred from tree rings. Clim Dyn 20:219–228Google Scholar
  17. D'Arrigo R, Wiles G, Jacoby G, Villalba R (1999) North Pacific sea surface temperatures: past variations inferred from tree rings. Geophys Res Lett 26:2757–2760CrossRefGoogle Scholar
  18. Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat 37:36–48Google Scholar
  19. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1(1):54–75. doi:10.1214/ss/1177013815 CrossRefGoogle Scholar
  20. Forbes BC, Fauria MM, Zetterberg P (2010) Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob Chang Biol 16(5):1542–1554. doi:10.1111/j.1365-2486.2009.02047.x CrossRefGoogle Scholar
  21. Fosaa AM (2001) A review of plant communities of the Faroe Islands. Fróðskaparrit 48:41–54Google Scholar
  22. Fosaa AM (2004a) Altitudinal distribution of plant communities in the Faroe Islands. Fróðskaparrit 51:217–236Google Scholar
  23. Fosaa AM (2004b) Biodiversity patterns of vascular plant species in mountain vegetation in the Faroe Islands. Divers Distrib 10(3):217–223. doi:10.1111/j.1366-9516.2004.00080.x CrossRefGoogle Scholar
  24. Fritts HC (2001) Tree rings and climate. Blackburn Press, CaldwellGoogle Scholar
  25. Gimingham CH (1960) Calluna Salisb. J Ecol 48(2):455. doi:10.2307/2257528 CrossRefGoogle Scholar
  26. Hallinger M, Wilmking M (2011) No change without a cause—why climate change remains the most plausible reason for shrub growth dynamics in Scandinavia. New Phytol 189(4):902–908. doi:10.1111/j.1469-8137.2010.03624.x CrossRefGoogle Scholar
  27. Hallinger M, Manthey M, Wilmking M (2010) Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytol 186(4):890–899. doi:10.1111/j.1469-8137.2010.03223.x CrossRefGoogle Scholar
  28. Hanhijärvi S, Tingley MP, Korhola A (2013) Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2,000 years. Clim Dyn 41(7–8):2039–2060. doi:10.1007/s00382-013-1701-4 CrossRefGoogle Scholar
  29. Hansen B, Østerhus S (2000) North Atlantic–Nordic Seas exchanges. Prog Oceanogr 45(2):109–208. doi:10.1016/S0079-6611(99)00052-X CrossRefGoogle Scholar
  30. Hansen B, Hátún H, Kristiansen R, Olsen SM, Østerhus S (2010) Stability and forcing of the Iceland-Faroe inflow of water, heat, and salt to the Arctic. Ocean Sci 6(4):1013–1026. doi:10.5194/os-6-1013-2010 CrossRefGoogle Scholar
  31. Isachsen PE, Mauritzen C, Svendsen H (2007) Dense water formation in the Nordic Seas diagnosed from sea surface buoyancy fluxes. Deep-Sea Res I Oceanogr Res Pap 54(1):22–41. doi:10.1016/j.dsr.2006.09.008 CrossRefGoogle Scholar
  32. Kolishchuk V (1990) Dendroclimatological study of prostrate woody plants. In: Cook ER, Kairiūkštis L (eds) Methods of dendrochronology. Applications in the environmental science. Kluwer Academic Publishers; International Institute for Applied Systems Analysis, Dordrecht, pp 51–55Google Scholar
  33. Körner C (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems, 2nd edn. Springer, BerlinGoogle Scholar
  34. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul 8(1):3–30. doi:10.1145/272991.272995 CrossRefGoogle Scholar
  35. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6(4):45509. doi:10.1088/1748-9326/6/4/045509 CrossRefGoogle Scholar
  36. Pompa-García M, Miranda-Aragón L, Aguirre-Salado CA (2014) Tree growth response to ENSO in Durango, Mexico. Int J Biometeorol. doi:10.1007/s00484-014-0828-2 Google Scholar
  37. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  38. Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214CrossRefGoogle Scholar
  39. Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Chang 43:353–367CrossRefGoogle Scholar
  40. Rayback SA, Henry GH (2006) Reconstruction of summer temperature for a Canadian High Arctic site from retrospective analysis of the dwarf shrub, Cassiope tetragona. Arct Antarct Alp Res 38(2):228–238. doi:10.1657/1523-0430(2006)38[228:ROSTFA]2.0.CO;2 CrossRefGoogle Scholar
  41. Rayback SA, Lini A, Henry G (2011) Spatial variability of the dominant climate signal in Cassiope tetragona from sites in Arctic Canada. Arctic 64(1):98–114CrossRefGoogle Scholar
  42. Rayner MC (1913) The ecology of Calluna vulgaris. New Phytol 12(2):59–78. doi:10.1111/j.1469-8137.1913.tb05680.x CrossRefGoogle Scholar
  43. Reynolds DJ, Butler PG, Williams SM, Scourse JD, Richardson CA, Wanamaker AD, Austin W, Cage AG, Sayer M (2013) A multiproxy reconstruction of Hebridean (NW Scotland) spring sea surface temperatures between AD 1805 and 2010. Palaeogeogr Palaeoclimatol Palaeoecol 386:275–285. doi:10.1016/j.palaeo.2013.05.029 CrossRefGoogle Scholar
  44. Rozema J, Weijers S, Broekman R, Blokker P, Buizer B, Werleman C, El Yaqine H, Hoogedoorn H, Fuertes MM, Cooper E (2009) Annual growth of Cassiope tetragona as a proxy for Arctic climate: developing correlative and experimental transfer functions to reconstruct past summer temperature on a millennial time scale. Glob Chang Biol 15(7):1703–1715. doi:10.1111/j.1365-2486.2009.01858.x CrossRefGoogle Scholar
  45. Schmidt NM, Baittinger C, Forchhammer MC (2006) Reconstructing century-long snow regimes using estimates of High Arctic Salix arctica radial growth. Arct Antarct Alp Res 38(2):257–262. doi:10.1657/1523-0430(2006)38[257:RCSRUE]2.0.CO;2 CrossRefGoogle Scholar
  46. Schweingruber FH (1988) Tree rings. ReidelGoogle Scholar
  47. Schweingruber F, Poschlod P (2005) Growth rings in herbs and shrubs: life span, age determination and stem anatomy. For Snow Landsc Res 79(3):195–415Google Scholar
  48. Schweingruber FH, Börner A, Schulze E (2006) Atlas of woody plant stems. Evolution, structure, and environmental modifications. Springer, BerlinGoogle Scholar
  49. Sicre M, Jacob J, Ezat U, Rousse S, Kissel C, Yiou P, Eiríksson J, Knudsen KL, Jansen E, Turon J (2008) Decadal variability of sea surface temperatures off North Iceland over the last 2000 years. Earth Planet Sci Lett 268(1–2):137–142. doi:10.1016/j.epsl.2008.01.011 CrossRefGoogle Scholar
  50. Speer JH (2010) Fundamentals of tree-ring research. University of Arizona Press, TucsonGoogle Scholar
  51. Thomson AM, Simpson IA, Brown JL (2005) Sustainable rangeland grazing in Norse Faroe. Hum Ecol 33(5):737–761. doi:10.1007/s10745-005-7596-x CrossRefGoogle Scholar
  52. Wanamaker AD, Butler PG, Scourse JD, Heinemeier J, Eiríksson J, Knudsen KL, Richardson CA (2012) Surface changes in the North Atlantic meridional overturning circulation during the last millennium. Nat Commun 3:899. doi:10.1038/ncomms1901 CrossRefGoogle Scholar
  53. Weijers S, Broekman R, Rozema J (2010) Dendrochronology in the High Arctic: July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona. Quat Sci Rev 29(27–28):3831–3842. doi:10.1016/j.quascirev.2010.09.003 CrossRefGoogle Scholar
  54. Weijers S, Wagner-Cremer F, Sass-Klaassen U, Broekman R, Rozema J (2013) Reconstructing High Arctic growing season intensity from shoot length growth of a dwarf shrub. Holocene 23(5):721–731. doi:10.1177/0959683612470178 CrossRefGoogle Scholar
  55. Wigley TM, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendrociimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar
  56. Wilmking M, Hallinger M, van Bogaert R, Kyncl T, Babst F, Hahne W, Juday GP, de Luis M, Novak K, Völlm C (2012) Continuously missing outer rings in woody plants at their distributional margins. Dendrochronologia 30(3):213–222. doi:10.1016/j.dendro.2011.10.001 CrossRefGoogle Scholar

Copyright information

© ISB 2015

Authors and Affiliations

  • Ilka Beil
    • 1
  • Allan Buras
    • 1
  • Martin Hallinger
    • 1
    • 2
  • Marko Smiljanić
    • 1
  • Martin Wilmking
    • 1
  1. 1.Landscape Ecology and Ecosystem Dynamics, Institute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
  2. 2.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations