International Journal of Biometeorology

, Volume 59, Issue 3, pp 299–310 | Cite as

Quantifying nitrous oxide fluxes on multiple spatial scales in the Upper Midwest, USA

  • Xin Zhang
  • Xuhui Lee
  • Timothy J. Griffis
  • Arlyn E. Andrews
  • John M. Baker
  • Matt D. Erickson
  • Ning Hu
  • Wei Xiao
Original Research Paper


This study seeks to quantify the roles of soybean and corn plants and the cropland ecosystem in the regional N2O budget of the Upper Midwest, USA. The N2O flux was measured at three scales (plant, the soil–plant ecosystem, and region) using newly designed steady-state flow-through plant chambers, a flux-gradient micrometeorological tower, and continuous tall-tower observatories. Results indicate that the following. (1) N2O fluxes from unfertilized soybean (0.03 ± 0.05 nmol m−2 s−1) and fertilized corn plants (−0.01 ± 0.04 nmol m−2 s−1) were about one magnitude lower than N2O emissions from the soil–plant ecosystem (0.26 nmol m−2 s−1 for soybean and 0.95 nmol m−2 s−1 for corn), confirming that cropland N2O emissions were mainly from the soil. (2) Fertilization increased the corn plant flux for a short period (about 20 days), and late-season fertilization dramatically increased the soybean plant emissions. (3) The direct N2O emission from cropland accounted for less than 20 % of the regional flux, suggesting a significant influence by other sources and indirect emissions, in the regional N2O budget.


Nitrous oxide Corn Soybean Agriculture Land surface flux 



We would like to thank the University of Minnesota UMore Park for use of the facilities. Funding was provided by the Ministry of Education of China (grant PCSIRT), the Rice Family Foundation, the Yale Center for Environmental Law & Policy Research Prize Fellowship, the Yale Institute for Biospheric Studies, and USDA NIFA/2010-65112-20528. Measurements at the WBI tower were funded by NOAA’s Climate Program Office and are part of NOAA’s contributions to the North American Carbon Program. We thank Professor Charles Stanier from the University of Iowa and his students for supporting the NOAA PFP measurements at the WBI tower.


  1. Andrews AE, Kofler JD, Trudeau ME, Williams JC, Neff DH, Masarie KA, Chao DY, Kitzis DR, Novelli PC, Zhao CL, Dlugokencky EJ, Lang PM, Crotwell MJ, Fischer ML, Parker MJ, Lee JT, Baumann DD, Desai AR, Stanier CO, de Wekker SFJ, Wolfe DE, Munger JW, Tans PP (2013a) CO2, CO and CH4 measurements from the NOAA Earth System Research Laboratory’s Tall Tower Greenhouse Gas Observing Network: instrumentation, uncertainty analysis and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmos Meas Technol Discus 6:1461–1553CrossRefGoogle Scholar
  2. Andrews AE, Lang PM, Crotwell AJ, Kofler JD (2013b) Nitrous oxide dry air mole fractions from the NOAA ESRL tall tower network using programmable flask packages (PFP), version: 2012-09-21Google Scholar
  3. Baker JM, Griffis TJ (2005) Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques. Agric For Meteorol 128(3–4):163–177CrossRefGoogle Scholar
  4. Bakwin PS, Davis KJ, Yi C, Wofsy SC, Munger JW, Haszpra L, Barcza Z (2004) Regional carbon dioxide fluxes from mixing ratio data. Tellus Ser B Chem Phys Meteorol 56(4):301–311CrossRefGoogle Scholar
  5. Bavin TK, Griffis TJ, Baker JM, Venterea RT (2009) Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize/soybean rotation ecosystem. Agric Ecosyst Environ 134(3–4):234–242CrossRefGoogle Scholar
  6. Beard BH, Hoover RM (1971) Effects of nitrogen on nodulation and yield of irrigated soybeans. Agron J 63(5):815–816CrossRefGoogle Scholar
  7. Betts AK, Helliker B, Berry J (2004) Coupling between CO2, water vapor, temperature, and radon and their fluxes in an idealized equilibrium boundary layer over land. J Geophys Res Atmos 109(D18)Google Scholar
  8. Bharati MP, Whigham DK, Voss RD (1986) Soybean response to tillage and nitrogen, phosphorus, and potassium fertilization. Agron J 78(6):947–950CrossRefGoogle Scholar
  9. Blunden J, Arndt DS (2012) State of the climate in 2011. Bull Am Meteorol Soc 93(7):S1–S264CrossRefGoogle Scholar
  10. Chang C, Janzen HH, Cho CM, Nakonechny EM (1998) Nitrous oxide emission through plants. Soil Sci Soc Am J 62(1):35–38CrossRefGoogle Scholar
  11. Chapuis-Lardy L, Wrage N, Metay A, Chotte JL, Bernoux M (2007) Soils, a sink for N2O? A review. Global Change Biol 13(1):1–17CrossRefGoogle Scholar
  12. Chen GX, Huang GH, Huang B, Yu KW, Wu J, Xu H (1997) Nitrous oxide and methane emissions from soil–plant systems. Nutr Cycl Agroecosyst 49(1–3):41–45CrossRefGoogle Scholar
  13. Chen X, Boeckx P, Shen S, Van Cleemput O (1999) Emission of N2O from rye grass (Lolium perenne L.). Biol Fertil Soils 28(4):393–396CrossRefGoogle Scholar
  14. Clough TJ, Sherlock RR, Rolston DE (2005) A review of the movement and fate of N2O in the subsoil. Symposium on nitrous oxide emissions from soils — from controls to multi-gas approach. Springer, Denver, CO, pp 3–11Google Scholar
  15. Del Grosso SJ, Wirth T, Ogle SM, Parton WJ (2008) Estimating agricultural nitrous oxide emissions. Trans Am Geophys Union 89:529–530CrossRefGoogle Scholar
  16. Denmead OT (2008) Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil 309(1–2):5–24CrossRefGoogle Scholar
  17. Denmead OT, Macdonald BCT, Bryant G, Naylor T, Wilson S, Griffith DWT, Wang WJ, Salter B, White I, Moody PW (2010) Emissions of methane and nitrous oxide from Australian sugarcane soils. Agric For Meteorol 150:748–756CrossRefGoogle Scholar
  18. Desjardins RL, Pattey E, Smith WN, Worth D, Grant B, Srinivasan R, MacPherson JI, Mauder M (2010) Multiscale estimates of N2O emissions from agricultural lands. Agric For Meteorol 150(6):817–824CrossRefGoogle Scholar
  19. Dlugokencky E, Lang PM, Crotwell AJ (2013) Nitrous oxide dry air mole fractions from the NOAA ESRL global cooperative air sampling network, version: 2012-09-21Google Scholar
  20. Fassbinder JJ, Schultz NM, Baker JM, Griffis TJ (2013) Automated, low-power chamber system for measuring nitrous oxide emissions. J Environ Qual 42:606–614CrossRefGoogle Scholar
  21. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  22. Fowler D, Pilegaard K, Sutton MA, Ambus P, Raivonen M, Duyzer J, Simpson D, Fagerli H, Fuzzi S, Schjoerring JK et al (2009) Atmospheric composition change: ecosystems–atmosphere interactions. Atmos Environ 43(33):5193–5267CrossRefGoogle Scholar
  23. Freeborn JR, Holshouser DL, Alley MM, Powell NL, Orcutt DM (2001) Soybean yield response to reproductive stage soil-applied nitrogen and foliar-applied boron. Agron J 93(6):1200–1209CrossRefGoogle Scholar
  24. Grant RF, Pattey E (2003) Modelling variability in N2O emissions from fertilized agricultural fields. Soil Biol Biochem 35(2):225–243CrossRefGoogle Scholar
  25. Gregorich EG, Rochette P, St-Georges P, McKim UF, Chan C (2008) Tillage effects on N2O emission from soils under corn and soybeans in Eastern Canada. Can J Soil Sci 88(2):153–161CrossRefGoogle Scholar
  26. Griffis TJ, Baker JM, Sargent SD, Erickson MD, Corcoran J, Chen M, Billmark K (2010) Influence of C-4 vegetation on (CO2)-C-13 discrimination and isoforcing in the upper Midwest, United States. Global Biogeochem Cycl 24Google Scholar
  27. Griffis TJ, Lee X, Baker JM, Russelle M, Zhang X, Venterea R, Millet D (2013) Reconciling the differences between top-down and bottom-up estimates of nitrous oxide emissions for the US Corn Belt. Global Biogeochem Cycles 27:746–754. doi: 10.1002/gbc.20066
  28. Groffman PM, Butterbach-Bahl K, Fulweiler RW, Gold AJ, Morse JL, Stander EK, Tague C, Tonitto C, Vidon P (2009) Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93(1–2):49–77. doi: 10.1007/S10533-008-9277-5 CrossRefGoogle Scholar
  29. Grundmann GL, Lensi R, Chalamet A (1993) Delayed NH3 and N2O uptake by maize leaves. New Phytol 124(2):259–263CrossRefGoogle Scholar
  30. Gutierrez-Boem FH, Scheiner JD, Rimski-Korsakov H, Lavado RS (2004) Late season nitrogen fertilization of soybeans: effects on leaf senescence, yield and environment. Nutr Cycl Agroecosyst 68(2):109–115CrossRefGoogle Scholar
  31. Helliker BR, Berry JA, Betts AK, Bakwin PS, Davis KJ, Denning AS, Ehleringer JR, Miller JB, Butler MP, Ricciuto DM (2004) Estimates of net CO2 flux by application of equilibrium boundary layer concepts to CO2 and water vapor measurements from a tall tower. J Geophys Res Atmos 109(D20)Google Scholar
  32. IPCC (2006) IPCC guidelines for national greenhouse gas inventories, 5 volumes. Institute for Global Environmental Strategies, HayamaGoogle Scholar
  33. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows. Their structure and measurement. Oxford University Press, 288 ppGoogle Scholar
  34. Kitzler B, Zechmeister-Boltenstern S, Holtermann C, Skiba U, Butterbach-Bahl K (2006) Nitrogen oxides emission from two beech forests subjected to different nitrogen loads. Biogeosciences 3(3):293–310CrossRefGoogle Scholar
  35. Kort EA, Eluszkiewicz J, Stephens BB, Miller JB, Gerbig C, Nehrkorn T, Daube BC, Kaplan JO, Houweling S, Wofsy SC (2008) Emissions of CH4 and N2O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations. Geophys Res Lett 35(18)Google Scholar
  36. Kroon PS, Hensen A, Jonker HJJ, Ouwersloot HG, Vermeulen AT, Bosveld FC (2010a) Uncertainties in eddy covariance flux measurements assessed from CH4 and N2O observations. Agric For Meteorol 150(6):806–816CrossRefGoogle Scholar
  37. Kroon PS, Vesala T, Grace J (2010b) Flux measurements of CH4 and N2O exchanges. Agric For Meteorol 150(6):745–747CrossRefGoogle Scholar
  38. Lensi R, Chalamet A (1981) Absorption of nitrous oxide by shoots of maize. Plant Soil 59(1):91–98CrossRefGoogle Scholar
  39. Liebig MA, Morgan JA, Reeder JD, Ellert BH, Gollany HT, Schuman GE (2005) Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil Tillage Res 83(1):25–52CrossRefGoogle Scholar
  40. Mahmood T, Ali R, Malik KA, Shamsi SRA (1998) Nitrous oxide emissions from an irrigated sandy-clay loam cropped to maize and wheat. Biol Fertil Soils 27(2):189–196CrossRefGoogle Scholar
  41. Marinho EVA, DeLaune RD, Lindau CW (2004) Nitrous oxide flux from soybeans grown on Mississippi alluvial soil. Commun Soil Sci Plan 35(1–2):1–8CrossRefGoogle Scholar
  42. Mendes IC, Hungria M, Vargas MAT (2003) Soybean response to starter nitrogen and Bradyrhizobium inoculation on a Cerrado oxisol under no-tillage and conventional tillage systems. Rev Bras Cienc Solo 27(1):81–87CrossRefGoogle Scholar
  43. Miles NL, Richardson SJ, Davis KJ, Lauvaux T, Andrews AE, West TO, Bandaru V, Crosson ER (2012) Large amplitude spatial and temporal gradients in atmospheric boundary layer CO2 mole fractions detected with a tower-based network in the U.S. upper Midwest. J Geophys Res Biogeosci 117Google Scholar
  44. Miller SM, Kort EA, Hirsch AI, Dlugokencky EJ, Andrews AE, Xu X, Tian H, Nehrkorn T, Eluszkiewicz J, Michalak AM, Wofsy SC (2012) Regional sources of nitrous oxide over the United States: seasonal variation and spatial distribution. J Geophys Res Atmos 117Google Scholar
  45. Misselbrook TH, Cape JN, Cardenas LM, Chadwick DR, Dragosits U, Hobbs PJ, Nemitz E, Reis S, Skiba U, Sutton MA (2011) Key unknowns in estimating atmospheric emissions from UK land management. Atmos Environ 45(5):1067–1074CrossRefGoogle Scholar
  46. Molodovskaya M, Warland J, Richards BK, Oeberg G, Steenhuis TS (2011) Nitrous oxide from heterogeneous agricultural landscapes: source contribution analysis by Eddy covariance and chambers. Soil Sci Soc Am J 75(5):1829–1838CrossRefGoogle Scholar
  47. Moreno F, Cayuela JA, Fernandez JE, FernandezBoy E, Murillo JM, Cabrera F (1996) Water balance and nitrate leaching in an irrigated maize crop in SW Spain. Agric Water Manag 32:71–83CrossRefGoogle Scholar
  48. Müller C (2003) Plants affect the in situ N2O emissions of a temperate grassland ecosystem. J Plant Nutr Soil Sci Z Pflanzenernahr Bodenkd 166(6):771–773CrossRefGoogle Scholar
  49. Outram FN, Hiscock KM (2012) Indirect Nitrous Oxide Emissions from Surface Water Bodies in a Lowland Arable Catchment: A Significant Contribution to Agricultural Greenhouse Gas Budgets? Environ Sci Technol 46(15):8156–8163Google Scholar
  50. Phillips FA, Leuning R, Baigenta R, Kelly KB, Denmead OT (2007) Nitrous oxide flux measurements from an intensively managed irrigated pasture using micrometeorological techniques. Agric For Meteorol 143(1–2):92–105CrossRefGoogle Scholar
  51. Pihlatie M, Ambus P, Rinne J, Pilegaard K, Vesala T (2005) Plant-mediated nitrous oxide emissions from beech (Fagus sylvatica) leaves. New Phytol 168(1):93–98CrossRefGoogle Scholar
  52. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949):123–125CrossRefGoogle Scholar
  53. Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Global agriculture and nitrous oxide emissions. Nat Clim Chang 2:410–416CrossRefGoogle Scholar
  54. Russelle MP, Birr AS (2004) Large-scale assessment of symbiotic dinitrogen fixation by crops: soybean and alfalfa in the Mississippi river basin. Agron J 96(6):1754–1760CrossRefGoogle Scholar
  55. Saikawa E, Schlosser CA, Prinn RG (2013) Global modeling of soil nitrous oxide emissions from natural processes. Glob Biogeochem Cycles 27(3):972–989. doi: 10.1002/Gbc.20087 CrossRefGoogle Scholar
  56. Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A (2008) Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crop Res 108(1):1–13CrossRefGoogle Scholar
  57. Schmidt JP, Schmitt MA, Randall GW, Lamb JA, Orf JH, Gollany HT (2000) Swine manure application to nodulating and nonnodulating soybean. Agron J 92:987–992CrossRefGoogle Scholar
  58. Schmidt I, van Spanning RJM, Jetten MSM (2004) Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiol-Sgm 150:4107–4114CrossRefGoogle Scholar
  59. Smart DR, Bloom AJ (2001) Wheat leaves emit nitrous oxide during nitrate assimilation. Proc Natl Acad Sci U S A 98(14):7875–7878CrossRefGoogle Scholar
  60. Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenh Gas Meas Manag 1(1):17–26CrossRefGoogle Scholar
  61. Turpin DH, Weger HG, Huppe HC (1997) Interactions between photosynthesis, respiration and nitrogen assimilation. In: Dennis DT, Turpin DH, Lefebvre DD (eds) Plant metabolism. Longman, Edinburgh Gate, Harlow, pp 509–524Google Scholar
  62. van Hove LWA, Adema EH, Vredenberg WJ, Pieters GA (1989) A study of the adsorption of NH3 and SO2 on leaf surfaces. Atmos Environ 23(7):1479–1486CrossRefGoogle Scholar
  63. Wagner-Riddle C, Thurtell GW, Kidd GK, Beauchamp EG, Sweetman R (1997) Estimates of nitrous oxide emission from agricultural fields over 28 months. Can J Soil Sci 77:135–144CrossRefGoogle Scholar
  64. Wesley TL, Lamond RE, Martin VL, Duncan SR (1998) Effects of late-season nitrogen fertilizer on irrigated soybean yield and composition. J Prod Agric 11(3):331–336CrossRefGoogle Scholar
  65. Zhang X, Lee XH, Griffis TJ, Baker JM, Erickson MD, Hu N, Xiao W (2013) The influence of plants on atmospheric methane in an agriculture-dominated landscape. Int J Biometeorol. doi: 10.1007/s00484-013-0662-y Google Scholar
  66. Zhang X, Lee XH, Griffis TJ, Baker JM, Xiao W (2014) Estimating greenhouse gas fluxes from an agriculture-dominated landscape using multiple planetary boundary layer methods. Atmos Chem Phys Discus 14:3231–3267. doi: 10.5194/acpd-14-3231-2014 CrossRefGoogle Scholar
  67. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, Xu H, Chen GX, Cai ZC, Yue J, Gu JX, Su F, Zou JW, Zhu JG (2008) Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 311(1–2):211–234CrossRefGoogle Scholar
  68. Zhuang QL, Lu YY, Chen M (2012) An inventory of global N2O emissions from the soils of natural terrestrial ecosystems. Atmos Environ 47:66–75. doi: 10.1016/j.atmosenv.2011.11.036 CrossRefGoogle Scholar
  69. Zou JW, Huang Y, Sun WJ, Zheng XH, Wang YS (2005) Contribution of plants to N2O emissions in soil–winter wheat ecosystem: pot and field experiments. Plant Soil 269(1–2):205–211CrossRefGoogle Scholar

Copyright information

© ISB 2014

Authors and Affiliations

  • Xin Zhang
    • 1
    • 6
  • Xuhui Lee
    • 1
  • Timothy J. Griffis
    • 2
  • Arlyn E. Andrews
    • 3
  • John M. Baker
    • 4
  • Matt D. Erickson
    • 2
  • Ning Hu
    • 5
  • Wei Xiao
    • 5
  1. 1.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA
  2. 2.Department of Soil, Water, and ClimateUniversity of MinnesotaSt. PaulUSA
  3. 3.Earth System Research LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA
  4. 4.Agricultural Research ServiceUS Department of Agriculture (USDA)St. PaulUSA
  5. 5.Yale-NUIST Center on Atmospheric EnvironmentNanjing University of Information Science and TechnologyNanjingChina
  6. 6.Woodrow Wilson School of Public and International AffairsPrinceton UniversityPrincetonUSA

Personalised recommendations