International Journal of Biometeorology

, Volume 59, Issue 1, pp 25–36 | Cite as

Application of redundancy analysis for aerobiological data

  • Magdalena Sadyś
  • Agnieszka Strzelczak
  • Agnieszka Grinn-Gofroń
  • Roy Kennedy
Original Paper


An aerobiological survey was conducted through five consecutive years (2006–2010) at Worcester (England). The concentration of 20 allergenic fungal spore types was measured using a 7-day volumetric spore trap. The relationship between investigated fungal spore genera and selected meteorological parameters (maximum, minimum, mean and dew point temperatures, rainfall, relative humidity, air pressure, wind direction) was examined using an ordination method (redundancy analysis) to determine which environmental factors favoured their most abundance in the air and whether it would be possible to detect similarities between different genera in their distribution pattern. Redundancy analysis provided additional information about the biology of the studied fungi through the results of the Spearman’s rank correlation. Application of the variance inflation factor in canonical correspondence analysis indicated which explanatory variables were auto-correlated and needed to be excluded from further analyses. Obtained information will be consequently implemented in the selection of factors that will be a foundation for forecasting models for allergenic fungal spores in the future.


RDA Fungal spores Meteorological parameters Aerobiology Species-environment relationship 



This project has been funded by the National Pollen and Aerobiology Research Unit at the University of Worcester and conducted within the framework of the doctoral studies of the first author.

Supplementary material

484_2014_818_MOESM1_ESM.docx (33 kb)
ESM 1 (DOCX 32 kb)


  1. Angelosante Bruno A, Pace L, Tomassetti B, Coppola E, Verdecchia M, Pacioni G, Visconti G (2007) Estimation of fungal spore concentrations associated to meteorological parameters. Aerobiologia 23:221–228CrossRefGoogle Scholar
  2. Belsley DA, Kuh E, Welsch RE (1980) Regression diagnostics: identifying influential data and sources of collinearity. Wiley, New YorkCrossRefGoogle Scholar
  3. Bolboacă S-D, Jäntschi L (2006) Pearson versus Spearman, Kendall’s tau correlation analysis on structure-activity relationships of biologic active compounds. LJS 9:179–200Google Scholar
  4. Burch M, Levetin E (2002) Effects of meteorological conditions on spore plumes. Int J Biometeorol 46:107–117CrossRefGoogle Scholar
  5. Croux C, Dehon C (2010) Influence function of the Spearman and Kendall correlation measures. SMA 19:497–515Google Scholar
  6. D’Amato G, Spieksma FTM (1995) Aerobiologic and clinical aspects of mould allergy in Europe. Allergy 50:870–877CrossRefGoogle Scholar
  7. del Mar Trigo M, Toro FJ, Recio M, Cabezudo B (2000) A statistical approach to comparing the results from different aerobiological stations. Grana 39:252–258CrossRefGoogle Scholar
  8. Driscoll P, Lecky F (2001) Article 6. An introduction to hypothesis testing. Parametric comparison of two groups—1. EMJ BMJ 18:124–130CrossRefGoogle Scholar
  9. Green BJ, Sercombe JK, Tovey ER (2005) Fungal fragments and undocumented conidia function as new aeroallergen sources. J Allergy Clin Immunol 115:1043–1048CrossRefGoogle Scholar
  10. Greene WH (1993) Econometric analysis. Macmillan, New YorkGoogle Scholar
  11. Grinn-Gofroń A (2011) Airborne Aspergillus and Penicillium in the atmosphere of Szczecin, (Poland) (2004–2009). Aerobiologia 27:67–76CrossRefGoogle Scholar
  12. Grinn-Gofroń A, Bosiacka B (2012) The advanced statistical methods in aerobiological studies. Acta Agrobot 65:69–74CrossRefGoogle Scholar
  13. Grinn-Gofroń A, Mika A (2008) Selected airborne allergenic fungal spores and meteorological factors in Szczecin, Poland, 2004–2006. Aerobiologia 24:89–97CrossRefGoogle Scholar
  14. Grinn-Gofroń A, Rapiejko P (2009) Occurrence of Cladosporium spp. and Alternaria spp. spores in Western, Northern and Central-Eastern Poland in 2004–2006 and relation to some meteorological factors. Atmos Res 93:747–758CrossRefGoogle Scholar
  15. Grinn-Gofroń A, Strzelczak A (2011) The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air. Int J Biometeorol 55:235–241CrossRefGoogle Scholar
  16. Grinn-Gofroń A, Strzelczak A (2013) Changes in concentration of Alternaria and Cladosporium spores during summer storms. Int J Biometeorol 57:759–768CrossRefGoogle Scholar
  17. Groß J (2003) Variance inflation factors. R News 3:13–15Google Scholar
  18. Haines JH, Beatriz E, Muilenberg M, Gallup J, Levetin E (2003) Mycology of the air. A workshop manual for sampling and identifying airborne fungus spores. Pan-American Aerobiology Association, TucsonGoogle Scholar
  19. Hasnain SM (1993) Influence of meteorological factors on the air spora. Grana 32:184–188CrossRefGoogle Scholar
  20. Hernández Trejo F, Muñoz Rodríguez AF, Tormo Molina R, Silva Palacios I (2012) Airborne ascospores in Mérida (SW Spain) and the effect of rain and other meteorological parameters on their concentration. Aerobiologia 28:13–26CrossRefGoogle Scholar
  21. Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  22. Hirst J (1952) An automatic volumetric spore trap. Ann App Biol 39:257–265CrossRefGoogle Scholar
  23. Hollins PD, Kettlewell PS, Atkinson MD, Stephenson DB, Corden JM, Millington WM, Mullins J (2004) Relationships between airborne fungal spore concentration of Cladosporium and the summer climate at two sites in Britain. Int J Biometeorol 48:137–141CrossRefGoogle Scholar
  24. Lacey J, Allitt U (1995) Airborne pollen and spores, a guide to trapping and counting. The British Aerobiology Federation, HarpendenGoogle Scholar
  25. Lacey WE, West J (2006) The air spora. A manual for catching and identifying airborne biological particles. Springer, DordrechtGoogle Scholar
  26. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  27. Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277CrossRefGoogle Scholar
  28. Li D-W, Kendrick B (1994) Functional relationships between airborne fungal spores and environmental factors in Kitchener-Waterloo, Ontario, as detected by Canonical correspondence analysis. Grana 33:166–176CrossRefGoogle Scholar
  29. Li D-W, Kendrick B (1995) A year-round study on functional relationships of airborne fungi with meteorological factors. Int J Biometeorol 39:74–80CrossRefGoogle Scholar
  30. Li D-W, Kendrick B (1996) Functional and causal relationships between indoor and outdoor airborne fungi. Can J Bot 74:194–209CrossRefGoogle Scholar
  31. Mimet A, Pellissier V, Quénol H, Aguejdad R, Dubreuil V, Rozé F (2009) Urbanisation induces early flowering: evidence from Platanus acerifolia and Prunus cerasus. Int J Biometeorol 53:287–298CrossRefGoogle Scholar
  32. Nikkels AH, Terstegge P, Spieksma FTM (1996) Ten types of microscopically identifiable airborne fungal spores at Leiden, the Netherlands. Aerobiologia 12:107–112CrossRefGoogle Scholar
  33. O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690CrossRefGoogle Scholar
  34. Obolewski K, Strzelczak A (2009) Epiphytic fauna inhibiting Stratiotes aloides in a new lake of the Słowiński National Park (Smołdzińskie lake, Poland). Ecohydrol Hydrobiol 9:257–267CrossRefGoogle Scholar
  35. Ogden EC, Raynor GS, Hayes JV, Lewis DM, Haines JH (1974) Manual for sampling airborne pollen. Hafner, New YorkGoogle Scholar
  36. Oksanen J, Minchin PR (1997) Instability of ordination results under changes in input data order: explanations and remedies. J Vegetation Sci 8:447–454CrossRefGoogle Scholar
  37. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Community ecology package. Accessed 25 Sep 2013
  38. Oliveira M, Ribeiro H, Delgado JL, Abreu I (2009) The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. Int J Biometeorol 53:61–73CrossRefGoogle Scholar
  39. Puc M (2012) Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland). Int J Biometeorol 56:395–401CrossRefGoogle Scholar
  40. Recio M, del Mar TM, Docampo S, Melgar M, García-Sánchez J, Bootello L, Cabezudo B (2012) Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: Alternaria and Cladosporium. Int J Biometeorol 56:983–991CrossRefGoogle Scholar
  41. Richardson MJ (1996) The occurrence of airborne Didymella spores in Edinburgh. Mycol Res 100:213–216CrossRefGoogle Scholar
  42. Rodríguez-Rajo FJ, Jato V, Fernández-González M, Jesus Aira M (2010) The use of aerobiological methods for forecasting Botrytis spore concentrations in a vineyard. Grana 49:56–65CrossRefGoogle Scholar
  43. Sabariego S, Díaz de la Guardia C, Alba F (2000) The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain). Int J Biometeorol 44:1–5CrossRefGoogle Scholar
  44. Simon-Nobbe B, Denk U, Pöll V, Rid R, Breitenbach M (2008) The spectrum of fungal allergy. Inte Arch Allergy Immunol 145:58–86CrossRefGoogle Scholar
  45. Simpson GL (2013) Functions for generating restricted permutations of data. Accessed 25 Sep 2013
  46. Southworth D (1974) Introduction to the biology of airborne fungal spores. Ann Allergy 32:1–22Google Scholar
  47. Stennet PJ, Beggs PJ (2004) Alternaria spores in the atmosphere of Sydney, Australia, and relationships with meteorological factors. Int J Biometeorol 49:98–105CrossRefGoogle Scholar
  48. Stępalska D, Wołek J (2005) Variations in fungal spore concentrations of selected taxa associated to weather conditions in Cracow, Poland, in 1997. Aerobiologia 21:43–52CrossRefGoogle Scholar
  49. Stępalska D, Wołek J (2009) The estimation of fungal spore concentrations using two counting methods. Acta Agrobot 62:117–123CrossRefGoogle Scholar
  50. Stępalska D, Grinn-Gofroń A, Piotrowicz K (2012) Occurrence of Didymella ascospores in western and southern Poland in 2004–2006. Aerobiologia 28:153–159CrossRefGoogle Scholar
  51. Teixeira Gonçalves FL, Bauer H, Alves Cardoso MG, Pukinskas S, Matos D, Melhem M, Puxbaum H (2010) Indoor and outdoor atmospheric fungal spores in the São Paulo metropolitan area (Brazil): species and numeric concentrations. Int J Biometeorol 54:347–355CrossRefGoogle Scholar
  52. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  53. ter Braak CJF (1995) Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology, 1st edn. Cambridge University Press, Cambridge, pp 91–173CrossRefGoogle Scholar
  54. ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317CrossRefGoogle Scholar
  55. Wagner HH (2004) Direct multi-scale ordination with canonical correspondence analysis. Ecology 85:342–351CrossRefGoogle Scholar

Copyright information

© ISB 2014

Authors and Affiliations

  • Magdalena Sadyś
    • 1
  • Agnieszka Strzelczak
    • 2
  • Agnieszka Grinn-Gofroń
    • 3
  • Roy Kennedy
    • 1
  1. 1.National Pollen and Aerobiology Research UnitUniversity of WorcesterWorcesterUK
  2. 2.Faculty of Food Sciences and FisheriesWest Pomeranian University of TechnologySzczecinPoland
  3. 3.Department of Plant Taxonomy and PhytogeographyUniversity of SzczecinSzczecinPoland

Personalised recommendations