International Journal of Biometeorology

, Volume 58, Issue 10, pp 2095–2109 | Cite as

Different growth sensitivity to climate of the conifer Juniperus thurifera on both sides of the Mediterranean Sea

  • Lucía DeSotoEmail author
  • Filipa Varino
  • José P. Andrade
  • Celia M. Gouveia
  • Filipe Campelo
  • Ricardo M. Trigo
  • Cristina Nabais
Original Paper


Mediterranean plants cope with cold wet winters and dry hot summers, with a drought gradient from northwest to southeast. Limiting climatic conditions have become more pronounced in the last decades due to the warming trend and rainfall decrease. Juniperus thurifera L., a long-lived conifer tree endemic to the western Mediterranean region, has a disjunct distribution in Europe and Africa, making it a suitable species to study sensitivity to climate in both sides of the Mediterranean Basin. Tree-ring width chronologies were built for three J. thurifera stands at Spain (Europe) and three in Morocco (Africa) and correlated with monthly temperature and precipitation. The temporal stability of climate-growth relationships was assessed using moving correlations; the drought effect on growth was calculated using the monthly standardized precipitation-evapotranspiration index (SPEI) at different temporal scales. In the wettest stands, increasing spring temperature and summer precipitation enhanced growth, while in the driest stands, growth was enhanced by higher spring precipitation and lower summer temperature. The climate-growth correlations shifted during the twentieth century, especially since the 1970s. Particularly noticeable is the recent negative correlation with previous autumn and winter precipitation in the wettest stands of J. thurifera, probably related with an effect of cloud cover or flooding on carbon storage depletion for next year growth. The driest stands were affected by drought at long time scales, while the wettest stands respond to drought at short time scales. This reveals a different strategy to cope with drought conditions, with populations from drier sites able to cope with short periods of water deficit.


Climate change Dendrochronology Juniper Mediterranean basin Tree ring 



We especially thank M Alifriqui and MJ Silva for their help in field and laboratory work. Climatic data from Morocco and Spain were kindly provided by A Fink and R Schuster and by the Spanish Agencia Estatal de Meteorología (AEMet), respectively. We also thank the comments by two anonymous referees that improved a previous version of the manuscript. This work was supported by Fundação para a Ciência e a Tecnologia (FCT) with the project MEDIATIC (PTDC/AAC-CLI/103361/2008). F Campelo and L DeSoto were supported by postdoctoral scholarships from FCT (SFRH/BPD/47822/2008 and SFRH/BPD/70632/2010, respectively) and F Varino and JP Andrade by two research fellowships of the project MEDIATIC.

Supplementary material

484_2014_811_MOESM1_ESM.pdf (11.9 mb)
ESM 1 (PDF 11.8 mb)


  1. Adam JC, Clark EA, Lettenmaier DP, Wood EF (2006) Correction of global precipitation products for orographic effects. J Clim 19:15–38CrossRefGoogle Scholar
  2. Alaoui Haroni S, Alifriqui M, Simonneaux V (2008) Recent dynamics of the wet pastures at Oukaimeden plateau (High Atlas mountains, Morroco). Biodivers Conserv 18:167–189. doi: 10.1007/s10531-008-9465-6 CrossRefGoogle Scholar
  3. Alpert P, Baharad A, Ramis C et al (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29:29–32CrossRefGoogle Scholar
  4. Amodei T, Guibal F, Fady B (2012) Relationships between climate and radial growth in black pine (Pinus nigra Arnold ssp. salzmannii (Dunal) Franco) from the south of France. Ann For Sci. doi: 10.1007/s13595-012-0237-9 Google Scholar
  5. Andreu L, Planells O, Gutiérrez E et al (2008) Climatic significance of tree-ring width and δ13C in a Spanish pine forest network. Tellus B 60:771–781. doi: 10.1111/j.1600-0889.2008.00370.x CrossRefGoogle Scholar
  6. Barbero M (1990) Changes and disturbances of forest ecosystems caused by human activities in the western part of the mediterranean basin. Vegetatio 7:257–173. doi: 10.1007/BF00042952 Google Scholar
  7. Bogino SM, Bravo F (2008) Growth response of Pinus pinaster Ait. to climatic variables in central Spanish forests. Ann For Sci 65:506. doi: 10.1051/forest CrossRefGoogle Scholar
  8. Boratyński A, Jasińska AK, Marcysiak K et al (2013) Morphological differentiation supports the genetic pattern of the geographic structure of Juniperus thurifera (Cupressaceae). Plant Syst Evol 299:773–784. doi: 10.1007/s00606-013-0760-7 CrossRefGoogle Scholar
  9. Born K, Christoph M, Fink AH et al (2008) Moroccan climate in the present and future: combined view from observational data and regional climate scenarios. In: Hötzl H (ed) Zereini F. Clim. Chang. Water Resour. Middle East North Africa, Springer Berlin Heidelberg, pp 29–45Google Scholar
  10. Born K, Fink AH, Knippertz P (2010) Meteorological processes influencing the weather and climate of Morocco. In: Speth P, Christoph M, Diekkrüger B (eds) Impacts Glob. Chang. Hydrol. Cycle West Northwest Africa. Springer, Heidelberg, Germany, pp 150–163Google Scholar
  11. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. doi: 10.1016/j.dendro.2008.01.002 CrossRefGoogle Scholar
  12. Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480. doi: 10.1111/j.1469-8137.2009.03073.x CrossRefGoogle Scholar
  13. Campelo F, García-González I, Nabais C (2011) detrendeR—a graphical user interface to process and visualize tree-ring data using R. Dendrochronologia 30:57–60. doi: 10.1016/j.dendro.2011.01.010 CrossRefGoogle Scholar
  14. Carrer M, Urbinati C (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol 170:861–871. doi: 10.1111/j.1469-8137.2006.01703.x CrossRefGoogle Scholar
  15. Carrer M, Nola P, Eduard JL et al (2007) Regional variability of climate? Growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95:1072–1083. doi: 10.1111/j.1365-2745.2007.01281.x CrossRefGoogle Scholar
  16. Carrion J, Yll E, Willis K, Sanchez P (2004) Holocene forest history of the eastern plateaux in the Segura Mountains (Murcia, southeastern Spain). Rev Palaeobot Palynol 132:219–236. doi: 10.1016/j.revpalbo.2004.07.002 CrossRefGoogle Scholar
  17. Cook ER, Kairiukstis L (1990) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers. Dordrecht, The NetherlandsCrossRefGoogle Scholar
  18. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 4:45–53Google Scholar
  19. Corcuera L, Camarero JJ, Gil-Pelegrin E (2004) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees-Struct Funct 18:83–92. doi: 10.1007/s00468-003-0284-9 CrossRefGoogle Scholar
  20. DeSoto L (2010) Global change effect on the dioecious tree Juniperus thurifera in the Iberian Peninsula. University of Valladolid, Doctoral Dissertation, 196Google Scholar
  21. DeSoto L, Olano JM, Rozas V, De la Cruz M (2010) Release of Juniperus thurifera woodlands from herbivore-mediated arrested succession in Spain. Appl Veg Sci 13:15–25. doi: 10.1111/j.1654-109X.2009.01045.x CrossRefGoogle Scholar
  22. DeSoto L, Camarero JJ, Olano JM, Rozas V (2012) Geographically structured and temporally unstable growth responses of Juniperus thurifera to recent climate variability in the Iberian Peninsula. Eur J For Res 131:905–917. doi: 10.1007/s10342-011-0564-7 CrossRefGoogle Scholar
  23. Di Filippo A, Biondi F, Čufar K et al (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–1892. doi: 10.1111/j.1365-2699.2007.01747.x CrossRefGoogle Scholar
  24. Esper J, Büntgen U, Frank DC et al (2006) Multiple tree-ring parameters from Atlas cedar (Morocco) and their climatic signal. In: Heinrich I, Gärtner H, Monbaron M, Schleser G (eds) TRACE—Tree Rings Archaeol. Climatol. Ecol. Vol. 4 Proc. DENDROSYMPOSIUM 2005. Schriften des Forschungszentrums Jülich, Reihe Umwelt, Fribourg, Switzerland, pp 46–55Google Scholar
  25. Esteban-Parra MJ, Rodrigo FS, Castro-Diez Y (1998) Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. Int J Climatol 18:1557–1574. doi: 10.1002/(SICI)1097-0088(19981130)18:14<1557::AID-JOC328>3.0.CO;2-J CrossRefGoogle Scholar
  26. Euskirchen ES, McGuire AD, Kicklighter DW et al (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob Chang Biol 12:731–750. doi: 10.1111/j.1365-2486.2006.01113.x CrossRefGoogle Scholar
  27. Fink AH, Christoph M, Born K et al (2010) Climate. Impacts Glob Chang Hydrol Cycle West Northwest Africa pp 54–58Google Scholar
  28. Fritts HC (1976) Tree-rings and climate. Academic, LondonGoogle Scholar
  29. Galiano L, Martínez-Vilalta J, Sabaté S, Lloret F (2012) Determinants of drought effects on crown condition and their relationship with depletion of carbon reserves in a Mediterranean holm oak forest. Tree Physiol 32:478–489. doi: 10.1093/treephys/tps025 CrossRefGoogle Scholar
  30. Gauquelin T, Bertaudiere V, Montes N et al (1999) Endangered stands of thuriferous juniper in the western Mediterranean basin: ecological status, conservation and management. Biodivers Conserv 8:1479–1498CrossRefGoogle Scholar
  31. Gestal-Souto L, Martinez A, Rios-Entenza A (2010) O papel das augas freáticas nas interaccións terra-atmosfera, no clima e no rexime pluviométrico da Península Ibérica. Revista Real Academia Galega de Ciencias 29:89–128Google Scholar
  32. Gimeno TE, Camarero JJ, Granda E et al (2012) Enhanced growth of Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought. Tree Physiol 32:326–336. doi: 10.1093/treephys/tps011 CrossRefGoogle Scholar
  33. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. doi: 10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  34. Grissino-Mayer HD (2001) Evaluating cross-dating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57:205–221Google Scholar
  35. Hoerling M, Eischeid J, Perlwitz J et al (2012) On the increased frequency of Mediterranean drought. J Clim 25:2146–2161. doi: 10.1175/JCLI-D-11-00296.1 CrossRefGoogle Scholar
  36. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  37. Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Chang Biol 12:2163–2174. doi: 10.1111/j.1365-2486.2006.01250.x CrossRefGoogle Scholar
  38. Kagawa A, Sugimoto A, Maximov TC (2006) 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ 29:1571–1584. doi: 10.1111/j.1365-3040.2006.01533.x CrossRefGoogle Scholar
  39. Klein T, Di Matteo G, Rotenberg E et al (2013) Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiol 33:26–36. doi: 10.1093/treephys/tps116 CrossRefGoogle Scholar
  40. Knippertz P, Christoph M, Speth P (2003) Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorol Atmos Phys 83:67–88. doi: 10.1007/s00703-002-0561-y CrossRefGoogle Scholar
  41. Kottek M, Grieser J, Beck C et al (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15:259–263. doi: 10.1127/0941-2948/2006/0130 CrossRefGoogle Scholar
  42. Kreuzwieser J, Gessler A (2010) Global climate change and tree nutrition: influence of water availability. Tree Physiol 1221–1234. doi: 10.1093/treephys/tpq055Google Scholar
  43. Kreuzwieser J, Papadopoulou E, Rennenberg H (2004) Interaction of flooding with carbon metabolism of forest trees. Plant Biol 6:299–306. doi: 10.1055/s-2004-817882 CrossRefGoogle Scholar
  44. Larcher W (2000) Temperature stress and survival ability of Mediterranean sclerophyllus. Plant Biosyst 134:279–295CrossRefGoogle Scholar
  45. Linares JC, Camarero JJ, Carreira JA (2009) Interacting effects of changes in climate and forest cover on mortality and growth of the southernmost European fir forests. Glob Ecol Biogeogr 18:485–497. doi: 10.1111/j.1466-8238.2009.00465.x CrossRefGoogle Scholar
  46. Linares JC, Taïqui L, Camarero JJ (2011) Increasing drought sensitivity and decline of Atlas Cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Forests 2:777–796. doi: 10.3390/f2030777 CrossRefGoogle Scholar
  47. Linares JC, Taïqui L, Sangüesa-Barreda G et al (2013) Age-related drought sensitivity of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Dendrochronologia 31:88–96. doi: 10.1016/j.dendro.2012.08.003 CrossRefGoogle Scholar
  48. Lionello P, Malanotte-Rizzoli P, Boscolo R (2006) Mediterranean climate variability. Elsevier, AmsterdamGoogle Scholar
  49. Mäkinen H, Nöjd P, Kahle H-P et al (2002) Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. For Ecol Manage 171:243–259CrossRefGoogle Scholar
  50. Mariotti A, Zeng N, Yoon J-H et al (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environ Res Lett 3:044001. doi: 10.1088/1748-9326/3/4/044001 CrossRefGoogle Scholar
  51. Martin-Benito D, Kint V, del Río M et al (2011) Growth responses of West-Mediterranean Pinus nigra to climate change are modulated by competition and productivity: past trends and future perspectives. For Ecol Manage 262:1030–1040. doi: 10.1016/j.foreco.2011.05.038 Google Scholar
  52. Martin-Benito D, Beeckman H, Cañellas I (2013) Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest. Eur J For Res 132:33–45. doi: 10.1007/s10342-012-0652-3 CrossRefGoogle Scholar
  53. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  54. Mitrakos KA (1980) A theory for Mediterranean plant life. Acta Oecol 1:245–252Google Scholar
  55. Ninyerola M, Pons X, Roure JM et al. (2003) Atles Climàtics de Catalunya. CD-ROM. Servei Meteorològic de Catalunya y Departament de Medi Ambient de la Generalitat de Catalunya. ISBN: 84-932860-5-2.Google Scholar
  56. Pasho E, Camarero JJ, de Luis M, Vicente-Serrano SM (2011) Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agric For Meteorol 151:1800–1811. doi: 10.1016/j.agrformet.2011.07.018 CrossRefGoogle Scholar
  57. Piovesan G, Schirone B (2000) Winter North Atlantic oscillation effects on the tree rings of the Italian beech (Fagus sylvatica L.). Int J Biometeorol 44:121–127CrossRefGoogle Scholar
  58. Rodriguez-Puebla C (1998) Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int J Climatol 5:1097–1316. doi: 10.1002/(SICI)1097-0088(19980315)18:3<299::AID-JOC247>3.0.CO;2-L Google Scholar
  59. Rozas V, Olano JM (2013) Environmental heterogeneity and neighbourhood interference modulate the individual response of Juniperus thurifera tree-ring growth to climate. Dendrochronologia 1–9. doi: 10.1016/j.dendro.2012.09.001
  60. Rozas V, DeSoto L, Olano JM (2009) Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytol 182:687–697. doi: 10.1111/j.1469-8137.2009.02770.x Google Scholar
  61. Rozas V, Zas R, García-González I (2011) Contrasting effects of water availability on Pinus pinaster radial growth near the transition between the Atlantic and Mediterranean biogeographical regions in NW Spain. Eur J For Res 130:959–970. doi: 10.1007/s10342-011-0494-4 CrossRefGoogle Scholar
  62. Sanchez-Lorenzo A, Calbó J, Wild M (2012) Increasing cloud cover in the 20th century: review and new findings in Spain. Clim Past 8:1199–1212. doi: 10.5194/cp-8-1199-2012 CrossRefGoogle Scholar
  63. Sousa PM, Trigo RM, Aizpurua P et al (2011) Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat Hazards Earth Syst Sci 11:33–51. doi: 10.5194/nhess-11-33-2011 CrossRefGoogle Scholar
  64. Terrab A, Schönswetter P, Talavera S et al (2008) Range-wide phylogeography of Juniperus thurifera L., a presumptive keystone species of western Mediterranean vegetation during cold stages of the Pleistocene. Mol Phylogenet Evol 48:94–102. doi: 10.1016/j.ympev.2008.03.018 CrossRefGoogle Scholar
  65. Todaro L, Andreu L, Dalessandro C et al (2007) Response of Pinus leucodermis to climate and anthropogenic activity in the National Park of Pollino (Basilicata, Southern Italy). Biol Conserv 137:507–519. doi: 10.1016/j.biocon.2007.03.010 CrossRefGoogle Scholar
  66. Trenberth KE, Jones PD, Ambenje P et al (2007) Observations: surface and atmospheric climate. In: Solomon S, Qin D, Manning M (eds) Clim. Chang. 2007 Phys. Sci. Basis. Contrib. Work. Gr. I to Fourth Assess. Rep. Intergov. Panel Clim. Chang. Cambridge University Press, Cambridge, pp 235–336Google Scholar
  67. Trigo R (2004) O Impacto da Oscilação do Atlântico Norte no caudal dos rios ibéricos Intenacionais. Física de la Tierra 16:185–196Google Scholar
  68. Trigo IF (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Clim Dyn 26:127–143. doi: 10.1007/s00382-005-0065-9 CrossRefGoogle Scholar
  69. Trigo RM, Pozo-Vázquez D, Osborn TJ et al (2004) North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int J Climatol 24:925–944. doi: 10.1002/joc.1048 CrossRefGoogle Scholar
  70. Vaganov EA, Anchukaitis KJ, Evans MN (2011) How well understood are the processes that create dendroclimatic records? A mechanistic model of the climatic control on conifer tree-ring growth dynamics. In: Hughes MK, Swetnam TW, Diaz HF (eds) Dendroclimatology Prog. Prospect, Dev. Paleoenviron. Res, pp 37–75CrossRefGoogle Scholar
  71. Vicente-Serrano SM (2006) Differences in spatial patterns of drought on different time scales: an analysis of the Iberian Peninsula. Water Resour Manag 20:37–60. doi: 10.1007/s11269-006-2974-8 CrossRefGoogle Scholar
  72. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation-evapotranspiration index. J Clim 23:1696–1718. doi: 10.1175/2009JCLI2909.1 CrossRefGoogle Scholar
  73. Vicente-Serrano SM, Beguería S, Lorenzo-Lacruz J et al (2012) Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact 16:1–27. doi: 10.1175/2012EI000434.1 CrossRefGoogle Scholar
  74. Vicente-Serrano SM, Gouveia C, Camarero JJ et al (2013) Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci U S A 110:52–57. doi: 10.1073/pnas.1207068110 CrossRefGoogle Scholar
  75. Wigley TM, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar
  76. Wils THG, Robertson I, Eshetu Z et al (2009) Periodicity of growth rings in Juniperus procera from Ethiopia inferred from crossdating and radiocarbon dating. Dendrochronologia 27:45–58. doi: 10.1016/j.dendro.2008.08.002 CrossRefGoogle Scholar

Copyright information

© ISB 2014

Authors and Affiliations

  • Lucía DeSoto
    • 1
    Email author
  • Filipa Varino
    • 2
  • José P. Andrade
    • 1
  • Celia M. Gouveia
    • 2
  • Filipe Campelo
    • 1
  • Ricardo M. Trigo
    • 2
  • Cristina Nabais
    • 1
  1. 1.Centre for Functional EcologyUniversity of CoimbraCoimbraPortugal
  2. 2.Instituto Dom Luiz (IDL)University of LisboaLisbonPortugal

Personalised recommendations