Skip to main content
Log in

Effects of negative air ions on oxygen uptake kinetics, recovery and performance in exercise: a randomized, double-blinded study

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Limited research has suggested that acute exposure to negatively charged ions may enhance cardio-respiratory function, aerobic metabolism and recovery following exercise. To test the physiological effects of negatively charged air ions, 14 trained males (age: 32 ± 7 years; \( \overset{\cdotp }{V}{\mathrm{O}}_{2 \max } \): 57 ± 7 mL min−1 kg−1) were exposed for 20 min to either a high-concentration of air ions (ION: 220 ± 30 × 103 ions cm−3) or normal room conditions (PLA: 0.1 ± 0.06 × 103 ions cm−3) in an ionization chamber in a double-blinded, randomized order, prior to performing: (1) a bout of severe-intensity cycling exercise for determining the time constant of the phase II \( \overset{\cdotp }{V}{\mathrm{O}}_2 \) response (τ) and the magnitude of the \( \overset{\cdotp }{V}{\mathrm{O}}_2 \) slow component (SC); and (2) a 30-s Wingate test that was preceded by three 30-s Wingate tests to measure plasma [adrenaline] (ADR), [nor-adrenaline] (N-ADR) and blood [lactate] (BLac) over 20 min during recovery in the ionization chamber. There was no difference between ION and PLA for the phase II \( \overset{\cdotp }{V}{\mathrm{O}}_2 \) τ (32 ± 14 s vs. 32 ± 14 s; P = 0.7) or \( \overset{\cdotp }{V}{\mathrm{O}}_2 \) SC (404 ± 214 mL vs 482 ± 217 mL; P = 0.17). No differences between ION and PLA were observed at any time-point for ADR, N-ADR and BLac as well as on peak and mean power output during the Wingate tests (all P > 0.05). A high-concentration of negatively charged air ions had no effect on aerobic metabolism during severe-intensity exercise or on performance or the recovery of the adrenergic and metabolic responses after repeated-sprint exercise in trained athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barker AR, Welsman JR, Fulford J, Welford D, Armstrong N (2008) Muscle phosphocreatine kinetics in children and adults at the onset and offset of moderate-intensity exercise. J Appl Physiol 105(2):446–456

    Article  Google Scholar 

  • Baron RA (1987) Effects of negative ions on cognitive performance. J Appl Psychol 72(1):131–137

    Article  CAS  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60(6):2020–2027

    CAS  Google Scholar 

  • Bender R, Lange S (2001) Adjusting for multiple testing–when and how? J Clin Epidemiol 54(4):343–349

    Article  CAS  Google Scholar 

  • Berger NJA, Tolfrey K, Williams AG, Jones AM (2006) Influence of continuous and interval training on oxygen uptake on-kinetics. Med Sci Sports Exerc 38(3):504–512

    Article  Google Scholar 

  • Buckalew LW, Rizzuto AP (1984) Negative air ion effects on human performance and physiological condition. Aviat Space Environ Med 55(8):731–734

    CAS  Google Scholar 

  • Caputo F, Mello MT, Denadai BS (2003) Oxygen uptake kinetics and time to exhaustion in cycling and running: a comparison between trained and untrained subjects. Arch Physiol Biochem 111(5):461–466

    Article  CAS  Google Scholar 

  • Cohen J (1988) The concepts of power analysis. In: Statistical power analysis for the behavioural sciences, 2nd edn. Erlbaum, Hillsdale, pp 8–11

    Google Scholar 

  • Coleman DA, Wiles JD, Nunn M, Smith MF (2005) Reliability of sprint test indices in well-trained cyclists. Int J Sports Med 26(5):383–387

    CAS  Google Scholar 

  • Diamond MC, Connor JR Jr, Orenberg EK, Bissell M, Yost M, Krueger A (1980) Environmental influences on serotonin and cyclic nucleotides in rat cerebral cortex. Science 210(4470):652–654

    Article  CAS  Google Scholar 

  • Giannini AJ, Jones BT, Loiselle RH (1986) Reversibility of serotonin irritation syndrome with atmospheric anions. J Clin Psychiatry 47(3):141–143

    CAS  Google Scholar 

  • Girard O, Mendez-Villanueva A, Bishop D (2011) Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med 41(8):673–694

    Article  Google Scholar 

  • Hawkins LH, Barker T (1978) Air ions and human performance. Ergonomics 21(4):273–278

    Article  CAS  Google Scholar 

  • Hedge A, Collis MD (1987) Do negative air ions affect human mood and performance? Ann Occup Hyg 31(3):285–290

    Article  CAS  Google Scholar 

  • Herrington LP (1935) The influence of ionized air upon normal subjects. J Clin Invest 14(1):70–80

    Article  CAS  Google Scholar 

  • Inbar O, Rotstein A, Dlin R, Dotan R, Sulman FG (1982) The effects of negative air ions on various physiological functions during work in a hot environment. Int J Biometeorol 26(2):153–163

    Article  CAS  Google Scholar 

  • Iwama H (2004) Negative air ions created by water shearing improve erythrocyte deformability and aerobic metabolism. Indoor Air 14(4):293–297

    Article  CAS  Google Scholar 

  • Jacob C, Zouhal H, Prioux J, Gratas-Delamarche A, Bentué-Ferrer D, Delamarche P (2004) Effect of the intensity of training on catecholamine responses to supramaximal exercise in endurance-trained men. Eur J Appl Physiol 91(1):35–40

    Article  CAS  Google Scholar 

  • Jones AM, Carter H (2000) The effect of endurance training on parameters of aerobic fitness. Sports Med 29(6):373–386

    Article  CAS  Google Scholar 

  • Jones AM, Wilkerson DP, Fulford J (2008) Muscle [phosphocreatine] dynamics following the onset of exercise in humans: the influence of baseline work-rate. J Physiol 586(3):889–898

    Article  CAS  Google Scholar 

  • Knicker AJ, Renshaw I, Oldham ARH, Cairns SP (2011) Interactive processes link the multiple symptoms of fatigue in sport competition. Sports Med 41(4):307–328

    Article  Google Scholar 

  • Koppo K, Bouckaert J, Jones AM (2004) Effects of training status and exercise intensity on phase II VO2 kinetics. Med Sci Sports Exerc 36(2):225–232. doi:10.1249/01.MSS.0000113473.48220.20

    Article  Google Scholar 

  • Kröling P (1985) Natural and artificially produced air ions—a biologically relevant climate factor? Int J Biometeorol 29(3):233–242

    Article  Google Scholar 

  • Krueger AP, Reed EJ (1976) Biological impact of small air ions. Science 193(4259):1209–1213

    Article  CAS  Google Scholar 

  • Krustrup P, Jones AM, Wilkerson DP, Calbet JAL, Bangsbo J (2009) Muscular and pulmonary O2 uptake kinetics during moderate- and high-intensity sub-maximal knee-extensor exercise in humans. J Physiol 587(Pt 8):1843–1856

    Article  CAS  Google Scholar 

  • Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G (1985) Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 6(4):197–201

    CAS  Google Scholar 

  • Lamarra N, Whipp BJ, Ward SA, Wasserman K (1987) Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol 62(5):2003–2012

    CAS  Google Scholar 

  • Marwood S, Roche D, Rowland T, Garrard M, Unnithan VB (2010) Faster pulmonary oxygen uptake kinetics in trained versus untrained male adolescents. Med Sci Sports Exerc 42(1):127–134

    Article  Google Scholar 

  • Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF (2006) Central fatigue: the serotonin hypothesis and beyond. Sports Med 36(10):881–909

    Article  Google Scholar 

  • Murias JM, Spencer MD, Kowalchuk JM, Paterson DH (2011) Influence of phase I duration on phase II VO2 kinetics parameter estimates in older and young adults. Am J Physiol Regul Integr Comp Physiol 301(1):R218–R224. doi:10.1152/ajpregu.00060.2011

    CAS  Google Scholar 

  • Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M (2013) Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 18(10):1208–1246. doi:10.1089/ars.2011.4498

    Article  CAS  Google Scholar 

  • Roelands B, Hasegawa H, Watson P, Piacentini MF, Buyse L, De Schutter G, Meeusen RR (2008) The effects of acute dopamine reuptake inhibition on performance. Med Sci Sports Exerc 40(5):879–885. doi:10.1249/MSS.0b013e3181659c4d

    Article  CAS  Google Scholar 

  • Rossiter HB, Ward SA, Kowalchuk JM, Howe FA, Griffiths JR, Whipp BJ (2002) Dynamic asymmetry of phosphocreatine concentration and O(2) uptake between the on- and off-transients of moderate- and high-intensity exercise in humans. J Physiol 541(Pt 3):991–1002

    Article  CAS  Google Scholar 

  • Ryushi T, Kita I, Sakurai T, Yasumatsu M, Isokawa M, Aihara Y, Hama K (1998) The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise. Int J Biometeorol 41(3):132–136

    Article  CAS  Google Scholar 

  • Sulman FG, Levy D, Levy A, Pfeifer Y, Superstine E, Tal E (1974) Air-ionometry of hot, dry dessert winds(Sharaw) and treatment with air ions of weather-sensitive subjects. Int J Biometeorol 18(4):313–318

    Article  CAS  Google Scholar 

  • Vincent S, Berthon P, Zouhal H, Moussa E, Catheline M, Bentué-Ferrer D, Gratas-Delamarche A (2004) Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men. Eur J Appl Physiol 91(1):15–21

    Article  CAS  Google Scholar 

  • Watson P, Hasegawa H, Roelands B, Piacentini MF, Looverie R, Meeusen R (2005) Acute dopamine/noradrenaline reuptake inhibition enhances human exercise performance in warm, but not temperate conditions. J Physiol 565(Pt 3):873–883. doi:10.1113/jphysiol.2004.079202

    Article  CAS  Google Scholar 

  • Whipp BJ, Rossiter HB (2005) The kinetics of oxygen uptake: physiological inferences from the parameters. In: Jones AM, Poole DC (eds) Oxygen uptake kinetics in sport, exercise and medicine. Routledge, Oxon, pp 62–94

    Google Scholar 

  • Yaglou CP (1937) Physical and physiological principles of air conditioning. J Am Med Assoc 108(20):1708–1713

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the commitment of the participants in this study.

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Nimmerichter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimmerichter, A., Holdhaus, J., Mehnen, L. et al. Effects of negative air ions on oxygen uptake kinetics, recovery and performance in exercise: a randomized, double-blinded study. Int J Biometeorol 58, 1503–1512 (2014). https://doi.org/10.1007/s00484-013-0754-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-013-0754-8

Keywords

Navigation