International Journal of Biometeorology

, Volume 58, Issue 7, pp 1503–1512 | Cite as

Effects of negative air ions on oxygen uptake kinetics, recovery and performance in exercise: a randomized, double-blinded study

  • Alfred NimmerichterEmail author
  • Johann Holdhaus
  • Lars Mehnen
  • Claudia Vidotto
  • Markus Loidl
  • Alan R. Barker
Original Paper


Limited research has suggested that acute exposure to negatively charged ions may enhance cardio-respiratory function, aerobic metabolism and recovery following exercise. To test the physiological effects of negatively charged air ions, 14 trained males (age: 32 ± 7 years; \( \overset{\cdotp }{V}{\mathrm{O}}_{2 \max } \): 57 ± 7 mL min−1 kg−1) were exposed for 20 min to either a high-concentration of air ions (ION: 220 ± 30 × 103 ions cm−3) or normal room conditions (PLA: 0.1 ± 0.06 × 103 ions cm−3) in an ionization chamber in a double-blinded, randomized order, prior to performing: (1) a bout of severe-intensity cycling exercise for determining the time constant of the phase II \( \overset{\cdotp }{V}{\mathrm{O}}_2 \) response (τ) and the magnitude of the \( \overset{\cdotp }{V}{\mathrm{O}}_2 \) slow component (SC); and (2) a 30-s Wingate test that was preceded by three 30-s Wingate tests to measure plasma [adrenaline] (ADR), [nor-adrenaline] (N-ADR) and blood [lactate] (BLac) over 20 min during recovery in the ionization chamber. There was no difference between ION and PLA for the phase II \( \overset{\cdotp }{V}{\mathrm{O}}_2 \) τ (32 ± 14 s vs. 32 ± 14 s; P = 0.7) or \( \overset{\cdotp }{V}{\mathrm{O}}_2 \) SC (404 ± 214 mL vs 482 ± 217 mL; P = 0.17). No differences between ION and PLA were observed at any time-point for ADR, N-ADR and BLac as well as on peak and mean power output during the Wingate tests (all P > 0.05). A high-concentration of negatively charged air ions had no effect on aerobic metabolism during severe-intensity exercise or on performance or the recovery of the adrenergic and metabolic responses after repeated-sprint exercise in trained athletes.


Environmental physiology Central fatigue Catecholamine Ergogenic 



The authors acknowledge the commitment of the participants in this study.

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.


  1. Barker AR, Welsman JR, Fulford J, Welford D, Armstrong N (2008) Muscle phosphocreatine kinetics in children and adults at the onset and offset of moderate-intensity exercise. J Appl Physiol 105(2):446–456CrossRefGoogle Scholar
  2. Baron RA (1987) Effects of negative ions on cognitive performance. J Appl Psychol 72(1):131–137CrossRefGoogle Scholar
  3. Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60(6):2020–2027Google Scholar
  4. Bender R, Lange S (2001) Adjusting for multiple testing–when and how? J Clin Epidemiol 54(4):343–349CrossRefGoogle Scholar
  5. Berger NJA, Tolfrey K, Williams AG, Jones AM (2006) Influence of continuous and interval training on oxygen uptake on-kinetics. Med Sci Sports Exerc 38(3):504–512CrossRefGoogle Scholar
  6. Buckalew LW, Rizzuto AP (1984) Negative air ion effects on human performance and physiological condition. Aviat Space Environ Med 55(8):731–734Google Scholar
  7. Caputo F, Mello MT, Denadai BS (2003) Oxygen uptake kinetics and time to exhaustion in cycling and running: a comparison between trained and untrained subjects. Arch Physiol Biochem 111(5):461–466CrossRefGoogle Scholar
  8. Cohen J (1988) The concepts of power analysis. In: Statistical power analysis for the behavioural sciences, 2nd edn. Erlbaum, Hillsdale, pp 8–11Google Scholar
  9. Coleman DA, Wiles JD, Nunn M, Smith MF (2005) Reliability of sprint test indices in well-trained cyclists. Int J Sports Med 26(5):383–387Google Scholar
  10. Diamond MC, Connor JR Jr, Orenberg EK, Bissell M, Yost M, Krueger A (1980) Environmental influences on serotonin and cyclic nucleotides in rat cerebral cortex. Science 210(4470):652–654CrossRefGoogle Scholar
  11. Giannini AJ, Jones BT, Loiselle RH (1986) Reversibility of serotonin irritation syndrome with atmospheric anions. J Clin Psychiatry 47(3):141–143Google Scholar
  12. Girard O, Mendez-Villanueva A, Bishop D (2011) Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med 41(8):673–694CrossRefGoogle Scholar
  13. Hawkins LH, Barker T (1978) Air ions and human performance. Ergonomics 21(4):273–278CrossRefGoogle Scholar
  14. Hedge A, Collis MD (1987) Do negative air ions affect human mood and performance? Ann Occup Hyg 31(3):285–290CrossRefGoogle Scholar
  15. Herrington LP (1935) The influence of ionized air upon normal subjects. J Clin Invest 14(1):70–80CrossRefGoogle Scholar
  16. Inbar O, Rotstein A, Dlin R, Dotan R, Sulman FG (1982) The effects of negative air ions on various physiological functions during work in a hot environment. Int J Biometeorol 26(2):153–163CrossRefGoogle Scholar
  17. Iwama H (2004) Negative air ions created by water shearing improve erythrocyte deformability and aerobic metabolism. Indoor Air 14(4):293–297CrossRefGoogle Scholar
  18. Jacob C, Zouhal H, Prioux J, Gratas-Delamarche A, Bentué-Ferrer D, Delamarche P (2004) Effect of the intensity of training on catecholamine responses to supramaximal exercise in endurance-trained men. Eur J Appl Physiol 91(1):35–40CrossRefGoogle Scholar
  19. Jones AM, Carter H (2000) The effect of endurance training on parameters of aerobic fitness. Sports Med 29(6):373–386CrossRefGoogle Scholar
  20. Jones AM, Wilkerson DP, Fulford J (2008) Muscle [phosphocreatine] dynamics following the onset of exercise in humans: the influence of baseline work-rate. J Physiol 586(3):889–898CrossRefGoogle Scholar
  21. Knicker AJ, Renshaw I, Oldham ARH, Cairns SP (2011) Interactive processes link the multiple symptoms of fatigue in sport competition. Sports Med 41(4):307–328CrossRefGoogle Scholar
  22. Koppo K, Bouckaert J, Jones AM (2004) Effects of training status and exercise intensity on phase II VO2 kinetics. Med Sci Sports Exerc 36(2):225–232. doi: 10.1249/01.MSS.0000113473.48220.20 CrossRefGoogle Scholar
  23. Kröling P (1985) Natural and artificially produced air ions—a biologically relevant climate factor? Int J Biometeorol 29(3):233–242CrossRefGoogle Scholar
  24. Krueger AP, Reed EJ (1976) Biological impact of small air ions. Science 193(4259):1209–1213CrossRefGoogle Scholar
  25. Krustrup P, Jones AM, Wilkerson DP, Calbet JAL, Bangsbo J (2009) Muscular and pulmonary O2 uptake kinetics during moderate- and high-intensity sub-maximal knee-extensor exercise in humans. J Physiol 587(Pt 8):1843–1856CrossRefGoogle Scholar
  26. Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G (1985) Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 6(4):197–201Google Scholar
  27. Lamarra N, Whipp BJ, Ward SA, Wasserman K (1987) Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol 62(5):2003–2012Google Scholar
  28. Marwood S, Roche D, Rowland T, Garrard M, Unnithan VB (2010) Faster pulmonary oxygen uptake kinetics in trained versus untrained male adolescents. Med Sci Sports Exerc 42(1):127–134CrossRefGoogle Scholar
  29. Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF (2006) Central fatigue: the serotonin hypothesis and beyond. Sports Med 36(10):881–909CrossRefGoogle Scholar
  30. Murias JM, Spencer MD, Kowalchuk JM, Paterson DH (2011) Influence of phase I duration on phase II VO2 kinetics parameter estimates in older and young adults. Am J Physiol Regul Integr Comp Physiol 301(1):R218–R224. doi: 10.1152/ajpregu.00060.2011 Google Scholar
  31. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M (2013) Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 18(10):1208–1246. doi: 10.1089/ars.2011.4498 CrossRefGoogle Scholar
  32. Roelands B, Hasegawa H, Watson P, Piacentini MF, Buyse L, De Schutter G, Meeusen RR (2008) The effects of acute dopamine reuptake inhibition on performance. Med Sci Sports Exerc 40(5):879–885. doi: 10.1249/MSS.0b013e3181659c4d CrossRefGoogle Scholar
  33. Rossiter HB, Ward SA, Kowalchuk JM, Howe FA, Griffiths JR, Whipp BJ (2002) Dynamic asymmetry of phosphocreatine concentration and O(2) uptake between the on- and off-transients of moderate- and high-intensity exercise in humans. J Physiol 541(Pt 3):991–1002CrossRefGoogle Scholar
  34. Ryushi T, Kita I, Sakurai T, Yasumatsu M, Isokawa M, Aihara Y, Hama K (1998) The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise. Int J Biometeorol 41(3):132–136CrossRefGoogle Scholar
  35. Sulman FG, Levy D, Levy A, Pfeifer Y, Superstine E, Tal E (1974) Air-ionometry of hot, dry dessert winds(Sharaw) and treatment with air ions of weather-sensitive subjects. Int J Biometeorol 18(4):313–318CrossRefGoogle Scholar
  36. Vincent S, Berthon P, Zouhal H, Moussa E, Catheline M, Bentué-Ferrer D, Gratas-Delamarche A (2004) Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men. Eur J Appl Physiol 91(1):15–21CrossRefGoogle Scholar
  37. Watson P, Hasegawa H, Roelands B, Piacentini MF, Looverie R, Meeusen R (2005) Acute dopamine/noradrenaline reuptake inhibition enhances human exercise performance in warm, but not temperate conditions. J Physiol 565(Pt 3):873–883. doi: 10.1113/jphysiol.2004.079202 CrossRefGoogle Scholar
  38. Whipp BJ, Rossiter HB (2005) The kinetics of oxygen uptake: physiological inferences from the parameters. In: Jones AM, Poole DC (eds) Oxygen uptake kinetics in sport, exercise and medicine. Routledge, Oxon, pp 62–94Google Scholar
  39. Yaglou CP (1937) Physical and physiological principles of air conditioning. J Am Med Assoc 108(20):1708–1713CrossRefGoogle Scholar

Copyright information

© ISB 2013

Authors and Affiliations

  • Alfred Nimmerichter
    • 1
    • 2
    Email author
  • Johann Holdhaus
    • 1
  • Lars Mehnen
    • 3
  • Claudia Vidotto
    • 4
  • Markus Loidl
    • 1
  • Alan R. Barker
    • 5
  1. 1.Institute for Sports Medicine and Science, Olympic CenterIMSB AustriaMaria EnzersdorfAustria
  2. 2.Sport and Exercise SciencesUniversity of Applied SciencesWiener NeustadtAustria
  3. 3.Department of Biomedical Engineering, Technikum WienUniversity of Applied SciencesViennaAustria
  4. 4.BKW Laboratory MedicineViennaAustria
  5. 5.Sport and Health Sciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK

Personalised recommendations