International Journal of Biometeorology

, Volume 57, Issue 4, pp 509–519 | Cite as

Influence of climatic conditions on the distribution, abundance and activity of Agriotes lineatus L. adults in sex pheromone traps in Croatia

  • Antonela Kozina
  • Maja Čačija
  • Jasminka Igrc Barčić
  • Renata Bažok
Original Paper

Abstract

The aims of this work were: (i) to determine the distribution and abundance of Agriotes lineatus, (ii) correlate the abundance with the prevailing climatic conditions to establish how temperature and rainfall are influencing the dominance, and (iii) to determine the activity characteristics of the adults. Investigations were conducted in 17 fields grouped in four regions characterized by different climatic conditions. Using sex pheromone traps the most important Agriotes species (A. lineatus L., A. sputator L., A. obscurus L., A. brevis Cand. and A. ustulatus Schall.) were collected. The monitoring period for A. brevis, A. sputator, A. lineatus and A. obscurus was from the 18th to the 32nd, and for A. ustulatus from the 23rd to the 32nd week of the year. A total of 61,247 individuals Agriotes were captured, of which 24,916 individuals were A. lineatus. Abundance and dominance of A. lineatus were significantly higher in the region of Zagreb compared to other regions. Moving east, rainfall decreased and temperatures increased and associated with that the abundance and dominance indices were lower. It was determined that the abundance of A. lineatus was negatively correlated with average air temperature (r = −0.5201; p < 0.0001). Compared to earlier data from the region of Zagreb the dominance index decreased. This might be a result of climate change as established average yearly temperature in these regions increased for 1.04 °C compared to the average data for the period 1961–1990. Other potentially damaging Agriotes species (A. brevis and A. ustulatus) were also present in high abundances in some micro-regions.

Keywords

Abundance Agriotes lineatus L. Climate change Distribution Seasonal activity Sex pheromone traps 

Notes

Acknowledgements

We thank Dr. Tomislav Kos and Damir Bertić for support in field research, as well as Tomislav Markovica, Josip Špoljar, Danijel Džajkić and Vera Šrajbek for collecting the click beetles. We thank Dr. Katarina Mikac for language corrections. This investigation was supported by the Ministry of Science, Education and Sports of the Republic of Croatia by two projects: “Fauna and ecology of family Elateridae in integrated pest management” (0178014) and “The spatial distribution of economically important pests with the use of GIS” (178-1782066-2065).

References

  1. Balarin I (1974) Fauna Heteroptera na krmnim leguminozama i prirodnim livadama u SR Hrvatskoj. Dissertation, University of Zagreb Faculty of AgricultureGoogle Scholar
  2. Bažok R (2007) Žičnjaci. Glasilo biljne zaštite 7(5):339–344Google Scholar
  3. Bažok R, Igrc Barčić J (2010) Pheromone applications in maize pest control. Nova Science Publishers, HauppaugeGoogle Scholar
  4. Benefer CM, Knight ME, Ellis JS, Hicks H, Blackshaw RP (2012) Understanding the relationship between adult and larval Agriotes distributions: the effect of sampling method, species identification and abiotic variables. Appl Soil Ecol. doi: 10.1016/j.apsoil.2011.11004
  5. Boggs CL, Inouye DW (2012) A single climate driver has direct and indirect effects on insect population dynamics. Ecol Lett 15(5):502–508CrossRefGoogle Scholar
  6. Brunner N, Hann P, Trska C, Kromp B (2011) How does wireworm damage in potato fields correlate with elaterid species as well as environmental and cultivation parameters? In: Ehlers R-U, Crickmore N, Enkerli J, Glazer I, Kirchmair M, Lopez-Ferber M, Neuhauser M, Strasser H, Tkaczuk C, Traugott M (eds) Insect Pathogens and Entomopatogenic Nematodes: Biological Control in IPM Systems IOBC/wprs Bulletin, vol 66, pp 487-490Google Scholar
  7. Caffarra A, Rinaldi M, Eccel E, Rossi V, Pertot I (2012) Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric Ecosyst Environ 148:89–101CrossRefGoogle Scholar
  8. Čamprag D (1997) Skočibube (Elateridae). Design studio Stanišić, Bačka Palanka i Poljoprivredni fakultet, Institut za zaštitu bilja „Dr. Pavle Vukasović“, Novi SadGoogle Scholar
  9. Dolin V G (1964) Ličinki žukov-ščelkunov (provoločniki) Evropejskoj časti SSSR, „Urožaj“, KijevGoogle Scholar
  10. Ester A, van Rozen K, Griepink FC (2001) Previous research of monitoring of Agriotes spp. with sex pheromones. In: Tadiotto A, Lavezzo I (eds) Proceedings of XXI IWGO Conference Legnaro, Italy, November, 305–311Google Scholar
  11. Furlan L (2011) The importance of the identification of Agriotes larvae to implement IPM in arable crops. In: Ehlers R-U, Crickmore N, Enkerli J, Glazer I, Kirchmair M, Lopez-Ferber M, Neuhauser M, Strasser H, Tkaczuk C, Traugott M (eds) Insect Pathogens and Entomopatogenic Nematodes: Biological Control in IPM Systems IOBC/wprs Bulletin, vol 66, pp 491-494Google Scholar
  12. Furlan L, Toth M, Ujvary I, Toffanin F (1996) L’utilizzo di feromoni sessuali per la razionalizzazione dela lotta agli elateridi del genere Agriotes: prime sperimentazioni in Italia. ATTI Giornate Fitopathologiche 1:133–140Google Scholar
  13. Furlan L, Toth M, Ujvary I (1997) The suitability of sex pheromone traps for implementing IPM strategies against Agriotes populations (Coleoptera: Elateridae). In Pego S, Martins R (eds) Proceedings of XIX IWGO Conference, Guimaraes, PortugalGoogle Scholar
  14. Furlan L, Toth M et al. (1999) Evaluation of the effectiveness of the new Agriotes sex pheromone traps in different European countries. Proceedings of XX IWGO Conference, Adan, Turkey, 4–10 SeptemberGoogle Scholar
  15. Furlan L, Toth M, Yatsynin V, Ujvary I (2001a) The project to implement IPM strategies against Agriotes species in Europe: What has been done and what is still to be done. In: Tadiotto A, Lavezzo I (eds) Proceedings of XXI IWGO Conference, Legnaro, Italy, November, pp 253–261Google Scholar
  16. Furlan L, Toth M, Parker WE, Ivezić M, Pančić S, Brmež M, Dobrinčić R, Barčić J, Muresan F, Subchev M, Toshova T, Molnar Z, Ditsch B, Voigt D (2001b) The efficacy of the new Agriotes sex pheromone traps in detecting wireworm population levels in different European countries. In: Tadiotto A, Lavezzo I (eds) Proceedings of XXI IWGO Conference Legnaro, Italy, November, pp 293–303Google Scholar
  17. Furlan L, Di Bernardo A, Ferrari R, Boriani L, Maini P, Bourlot G, Turchi A, Vacante V, Bonsignore C, Gilioli G, Toth M (2001c) First practical results of click beetle trapping with pheromone traps in Italy. In: Tadiotto A, Lavezzo I (eds) Proceedings of XXI IWGO Conference, Legnaro, Italy, November, pp 277–282Google Scholar
  18. Gomboc S, Milevoj L, Bitnec P, Bobnar A, Celar F, Furlan L, Toth M (2001) Two years of monitoring click beetles and wireworms in Slovenia. In: Tadiotto A, Lavezzo I (eds) Proceedings of XXI IWGO Conference, Legnaro, Italy, November, 283–292Google Scholar
  19. Gylling Data Management, Inc. ARM software Revision 7.2.2, September 12, 2005. Brookings, South Dakota, USAGoogle Scholar
  20. Hicks H, Blackshaw RP (2008) Differential responses of three Agriotes click beetle species to pheromone traps. Agric For Entomol 10:443–448CrossRefGoogle Scholar
  21. Junk J, Eickermann K, Görgen K, Beyer M, Hoffmann L (2012) Ensemble-based analysis of regional climate change effects on the cabbage stem weevil (Ceutorhynchus pallidactylus (Mrsh.) in winter oilseed rape (Brassica napus L.). J Agric Sci 150:191–202CrossRefGoogle Scholar
  22. Kocmánková E, Trnka M, Eitzinger J, Dubrovský M, Štĕpánek P, Semerádová D, Balek J, Skalák P, Farda A, Juroch J, Žalud Z (2011) Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: a novel approach. J Agric Sci 149:185–195CrossRefGoogle Scholar
  23. Kovačević Ž (1960) Problematika zemljišnih štetnika u istočnoj Slavoniji. Sav Polj 7/8:567–580Google Scholar
  24. Laibner S (2000) Elateridae of the Czech and Slovak Republics. Kabourek, ZlinGoogle Scholar
  25. Maceljski M (1975) Iskustva i rezultati višegodišnjih ispitivanja suzbijanja žičnjaka u kukuruzu. Agronomski Glasnik 1(4):127–141Google Scholar
  26. Maceljski M (2002) Poljoprivredna entomologija. Zrinski, ČakovecGoogle Scholar
  27. Maceljski M, Bedeković M (1962) Novi momenti zaštite kukuruza od štetnika. PF Zag. Sav. Z.bilja, 151–160Google Scholar
  28. Milevoj L, Gomboc S, Bobnar A, Smodiš T, Valič N, Mikuš T (2005) Spremljanje aktivnosti pet vrst pokalic rodu Agriotes (Coleoptera: Elateridae) s feromonskimi vabami v okolici Ljubljane. Zbornik predavanj in referatov 7. slovenskega posvetovanja o varstvu rastlin. Zreče, 254–262Google Scholar
  29. Musolin DE (2007) Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Glob Chang Biol 13:1565–1585CrossRefGoogle Scholar
  30. Novak P (1952) Kornjaši Jadranskog primorja (Coleoptera). Izdavački zavod Jugoslavenske akademije znanosti i umjetnosti, Zagreb, pp 128–137Google Scholar
  31. Parker WE, Furlan L, Toth M (2001) Future European priorities for wireworm research. In: Tadiotto A, Lavezzo I (eds) Proceedings of XXI IWGO Conference, Legnaro, Italy, November, 317–321Google Scholar
  32. Penzar I, Penzar B (2000) Agrometeorologija. Školska knjiga, ZagrebGoogle Scholar
  33. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. In: Contribution to working group I to the fourth assessment report of the intergovernmental panal on climate change. Cambridge University Press, chapters 3 and 11Google Scholar
  34. Staudacher K, Schallhart N, Pitterl P, Wallinger C, Brunner N, Landl M, Kromp B, Glauninger J, Traugott M (2011) Occurrence of Agriotes wireworms in Austrian agricultural land. J Pest Sci. doi: 10.1007/s10340-011-0393-y
  35. Štrbac P (1983) Fauna, bionomija i morfološko-taksonomske karakteristike klisnjaka i trčuljaka (Col.; Elateridae; Carabidae) u agroekološkim uslovima Slavonije i Baranje. Dissertation, University of Osijek Faculty of AgricultureGoogle Scholar
  36. Suckling DM, Karg G (2000) Pheromones and other semiochemicals. In: Rechcigl J, Rechcigl N (eds) Biological and biotechnological control of insect pests. CRC Press, Boca RatonGoogle Scholar
  37. Sufyan M, Neuhoff D, Furlan L (2011) Assessment of the range of attraction of pheromone traps to Agriotes lineatus and Agriotes obscures. Agric For Entomol 13(3):313–319CrossRefGoogle Scholar
  38. Toth Z (1984) Click beetles (Elateridae) in the soils of Central Europe. Their distribution and description: Part I (Ge. Agriotes). Acta Phytop Acad Scient Hung 19:13–29Google Scholar
  39. Toth M, Imrei Z, Szarukan I, Körörsi R, Furlan L (2001) First results of click beetle trapping with pheromone traps in Hungary 1998–2000. In: Tadiotto A, Lavezzo I (eds) Proceedings of XXI IWGO Conference, Legnaro, Italy, November, 263–267Google Scholar
  40. Vasilj Đ (2000) Biometrika i eksperimentiranje u bilinogojstvu. Hrvatsko Agronomsko Društvo, ZagrebGoogle Scholar
  41. Ward NL, Masters GJ (2007) Linking climate change and species invasion: an illustration using insect herbivores. Glob Chang Biol 13:1065–1615CrossRefGoogle Scholar
  42. Yuan JS, Himanen SJ, Holopainen JK, Chen F, Stewart CN Jr (2009) Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol Evol 24:323–331CrossRefGoogle Scholar

Copyright information

© ISB 2012

Authors and Affiliations

  • Antonela Kozina
    • 1
  • Maja Čačija
    • 1
  • Jasminka Igrc Barčić
    • 2
  • Renata Bažok
    • 1
  1. 1.Department for Agricultural ZoologyUniversity of Zagreb, Faculty of AgricultureZagrebCroatia
  2. 2.Chromos Agro d.d.ZagrebCroatia

Personalised recommendations