Advertisement

International Journal of Biometeorology

, Volume 57, Issue 3, pp 423–435 | Cite as

Plant phenological records in northern Finland since the 18th century as retrieved from databases, archives and diaries for biometeorological research

  • Jari HolopainenEmail author
  • Samuli Helama
  • Hanna Lappalainen
  • Hilppa Gregow
Original Paper

Abstract

Plant phenological data from northern Finland, compiled from several sources, were examined as potential biometeorological indicators of climate change since the 18th century. A common feature of individual series was their sporadic nature. In addition to waning enthusiasm, wartime hardships and crop failures had caused gaps in recording observations during the 18th and 19th centuries. The present study’s challenge was to combine separate records, as retrieved from several historical archives and personal diaries, into a single continuous series. To avoid possible biases due to the variability of data availability each year, each phenomenon-specific mean series was transformed into normalized site-specific index series. These series were compared to each other and to a regional instrumental temperature series (years 1802–2011). The inter-phenomena correlations were high. Moreover, a strong biometeorological response of the phenological series, most especially to monthly mean temperature in May, and seasonally to the April through June temperatures, was identified. This response focused on slightly later spring months compared to the responses in an earlier study conducted for southern Finland. The findings encouraged us to compute a total phenological index series as an average of all available phenomenon-specific index series for northern Finland. The earliest phenological springs were found as a cluster in the recent end of the record, whereas the anomalously-late phenological spring could be found through the centuries. This finding could indicate that potential future warming could result in an earlier onset of phenological springs (i.e. as experienced by the plants), with a remaining possibility of late phenological springs. To conclude, it was shown that the indices are reliable biometeorological indicators of the April through June temperature variations and thus of the climate variability in the region.

Keywords

Climatic change Phenology Lapland Finland Biogeography 

Notes

Acknowledgments

We wish to thank the native naturalist, Mr. Aarne Juhonsalo, who has continued to make phenological observations for the past six decades; he provided the phenological data of Oulainen for 1952–2011. Mr. Pentti Pirinen (Finnish Meteorological Institute) is acknowledged for providing the phenological data for parts of the 20th century, as well as for his help with creation of a map. We thank Dr. Anders Moberg, from the Department of Physical Geography and Quaternary Geology at Stockholm University, for the Torndedalen temperature data. The work of SH was made possible by funding from the Academy of Finland (grant #251441). Dr. Curtis Wood edited for English language corrections.

References

  1. ACIA (2004) Impacts of a warming arctic: arctic climate impact assessment. Cambridge University Press. http://www.acia.uaf.edu/. Accessed 25 June 2012
  2. Aono Y, Kazui K (2008) Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. Int J Climatol 28:905–914CrossRefGoogle Scholar
  3. Aono Y, Saito S (2010) Clarifying springtime temperature reconstructions of the medieval period by gap-filling the cherry blossom phenological data series at Kyoto, Japan. Int J Biometeorol 54:211–219CrossRefGoogle Scholar
  4. Brázdil R, Dobrovolný P, Luterbacher J, Moberg A, Pfister C, Wheeler D, Zorita E (2010) European climate of the past 500 years: new challenges for historical climatology. Clim Chang. doi: 10.1007/s10584-009-9783-z
  5. Bunn AG, Sharac TJ, Graumlich LJ (2004) Using a simulation model to compare methods of tree-ring detrending and to investigate the detectability of low-frequency signals. Tree-Ring Res 60:77–90CrossRefGoogle Scholar
  6. Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Le Roy LE (2004) Historical phenology: grape ripening as a past climate indicator. Nature 432:289–290CrossRefGoogle Scholar
  7. Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment lenght curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5:229–237CrossRefGoogle Scholar
  8. Dobrovolný P, Moberg A, Brázdil R, Pfister C, Glaser R, Wilson R, van Engelen A, Limanówka D, Kiss A, Halíčková M, Macková J, Riemann D, Luterbacher J, Böhm R (2010) Monthly and seasonal temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Clim Chang 101:69–107. doi: 10.1007/s10584-009-9724-x Google Scholar
  9. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253CrossRefGoogle Scholar
  10. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  11. Gervais BR, MacDonald GM (2001) Tree-ring and summer-temperature response to volcanic aerosol forcing at the northern tree-line, Kola Peninsula, Russia. Holocene 11:499–505CrossRefGoogle Scholar
  12. Häkkinen R (1999) Analysis of bud-development theories based on long-term phenological and air temperature series: application to Betula sp. leaves. Dissertation. Finnish Forest Research Institute, Vantaa, FinlandGoogle Scholar
  13. Häkkinen R, Linkosalo T, Hari P (1995) Methods for combining phenological time series: application to bud burst in birch (Betula pendula) in Central Finland for the period 1896–1955. Tree Phys 15:721–726CrossRefGoogle Scholar
  14. Häkkinen R, Linkosalo T, Hari P (1998) Effects of dormacy and environmental factors on timing of bud burst in Betula pendula. Tree Phys 18:707–712CrossRefGoogle Scholar
  15. Hari P, Häkkinen R (1991) The utilization of old phenological time series of budburst to compare models describing annual cycles of plants. Tree Phys 8:281–287CrossRefGoogle Scholar
  16. Heikinheimo M, Lappalainen H (1997) Dependence of the flower bud burst of some plant taxa in Finland on effective temperature sum: implications for climate warming. Ann Bot Fenn 34:229–243Google Scholar
  17. Heino R (1994) Climate in Finland during the period of meteorological observations. Dissertation. Finnish Meteorological Institute, Vantaa, FinlandGoogle Scholar
  18. Helama S, Holopainen J, Timonen M, Ogurtsov MG, Lindholm M, Meriläinen J, Eronen M (2004a) Comparison of living-tree and subfossil ringwidths with summer temperatures from 18th, 19th and 20th centuries in northern Finland. Dendrochronologia 21:147–154CrossRefGoogle Scholar
  19. Helama S, Lindholm M, Timonen M, Eronen M (2004b) Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theor Appl Climatol 79:239–254CrossRefGoogle Scholar
  20. Helama S, Lindholm M, Meriläinen J, Timonen M, Eronen M (2005) Multicentennial ring-width chronologies of Scots pine along north-south gradient across Finland. Tree-Ring Res 61:21–32CrossRefGoogle Scholar
  21. Helama S, Läänelaid A, Tietäväinen H, Macias Fauria M, Kukkonen IT, Holopainen J, Nielsen JK, Valovirta I (2010) Late Holocene climatic variability reconstructed from incremental data from pines and pearl mussels—a multi-proxy comparison of air and subsurface temperatures. Boreas 39:734–748CrossRefGoogle Scholar
  22. Holopainen J (2006) Reconstructions of past climates from documentary and natural sources in Finland since the 18th century. Dissertation. University of Helsinki, FinlandGoogle Scholar
  23. Holopainen J, Vesajoki H (2001) Varhainen lämpötilahavaintosarja Torniosta vuosilta 1737–1749. Terra 113:196–201Google Scholar
  24. Holopainen J, Helama S, Timonen M (2006) Plant phenological data and tree-rings as palaeoclimate indicators since AD 1750 in SW Finland. Int J Biometeorol 51(1):61–72CrossRefGoogle Scholar
  25. Holopainen J, Helama S, Kajander JM, Korhonen J, Launiainen J, Nevanlinna H, Reissell A, Salonen VP (2009) A multiproxy reconstruction of spring temperatures in south-west Finland since AD 1750. Clim Chang 92:213–233CrossRefGoogle Scholar
  26. Holopainen J, Gregow H, Helama S, Kubin E, Lummaa V, Terhivuo J (2012) Suomen kasvifenologisista havainnoista 1700-luvun puolivälistä nykypäivään. Sorbifolia 43(2):51–66Google Scholar
  27. Intergovernmental Panel on Climate Change (IPCC) (2007) The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. http://www.ipcc-wg1.unibe.ch/publications/wg1-ar4/wg1-ar4.html. Accessed 25 June 2012
  28. Johansson O V (1945) Det fenologiska observation materialet i Finland och provstudierna av samma. Bidrag till kännedom af Finlands natur och folk 88(8):5–118Google Scholar
  29. Jylhä K, Ruosteenoja K, Räisänen J, Venäläinen A, Tuomenvirta H, Ruokolainen L, Saku S, Seitola T (2009) Arvioita Suomen muuttuvasta ilmastosta sopeutumistutkimuksia varten. ACCLIM-hankkeen raportti 2009. (The changing climate in Finland: estimates for adaptation studies. ACCLIM project report 2009) Ilmatieteen laitos. Raportteja 4:1–102Google Scholar
  30. Klingbjer P, Moberg A (2003) A composite monthly temperature record from Tornedalen in northern Sweden, 1802–2002. Int J Climatol 23:1465–1494CrossRefGoogle Scholar
  31. Koch E, Bruns E, Chmielewski FM, Defila C, Lipa W, Menzel A (2007) Guidelines for plant phenological observations. http://www.omm.urv.cat/documentation.html. Accessed 25 June 2012
  32. Kubin E, Pudas E, Venäläinen A, Terhivuo J (2008) Phenological recording in Finland. In: Nekovář J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski FE (eds) The history and current status of plant phenology in Europe. COST Action 725. Vammalan Kirjapaino Oy, Vammala, pp 68–75Google Scholar
  33. Lappalainen HK (1994) Examples of plant phenological events in Finland and their relation to temperature. Memoranda Soc Fauna Flora Fennica 70:105–121Google Scholar
  34. Lappalainen HK (2010) Role of temperature in the biological activity of a boreal forest. Dissertation. Finnish Meteorological Institute, Vantaa, FinlandGoogle Scholar
  35. Lappalainen HK, Heikinheimo M (1992) Relations between climatological and plant phenological observations, vol 1. Survey of plant phenological observations in Finland from 1896 to 1965. Meteorol Publ 20:1–74Google Scholar
  36. Lappalainen JT, Ericson Wolke L, Pylkkänen A (2008a) Suomen sodan historia 1808–1809. Suomalaisen Kirjallisuuden Seuran Toimituksia 1200:1–343Google Scholar
  37. Lappalainen HK, Linkosalo T, Venäläinen A (2008b) Long-term trends in spring phenology in a boreal forest in central Finland. Boreal Environ Res 13:303–318Google Scholar
  38. Lieth H (ed) (1974) Phenology and seasonality modeling. Springer, HeidelbergGoogle Scholar
  39. Linkosalo T (2000) Analyses of spring phenology of boreal trees and its response to climate change. Dissertation. University of Helsinki, FinlandGoogle Scholar
  40. Linkosalo T, Häkkinen R, Hari P (1996) Improving the reliability of a combined phenological time series by analysing observation quality. Tree Phys 16:661–664CrossRefGoogle Scholar
  41. Linkosalo T, Häkkinen R, Terhivuo J, Tuomenvirta H, Hari P (2009) The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming. Agr For Meteorol 149:453–461CrossRefGoogle Scholar
  42. Linné C von, Barck H (1753) Vernatio arborum. Upsaliæ: exc. L. M. HöjerGoogle Scholar
  43. Maurer C, Koch E, Hammerl C, Hammerl T, Pokorny E (2009) BACCHUS temperature reconstruction for the period 16th to 18th centuries from Viennese and Klosterneuburg grape harvest dates. J Geophys Res 114:D22106. doi: 10.1029/2009JD011730 CrossRefGoogle Scholar
  44. Moberg A (1857) Naturhistoriska dag-anteckningar gjorda i Finland, Åren 1750–1845. Notiser ur Sällskapets pro Fauna & Flora fennica förhandlingar. Bihang till Acta Societatis Scientarium Fennicæ 3:95–250Google Scholar
  45. Moberg A (1894) Fenologiska iakttagelser i Finland åren 1750–1845. Bidrag Till Kännedom Af Finlands Natur Och Folk 55:1–165Google Scholar
  46. Nordli PØ (2001) Reconstruction of nineteenth century summer temperatures in Norway by proxy data from farmers’ diaries. Clim Chang 48:201–218CrossRefGoogle Scholar
  47. Parvela AA (1937) Eräitä piirteitä Oulun läänin ilmastosta kasvifenologisten havaintojen perusteella. Suomen Maataloustieteellisen Seuran Julkaisuja 35(1):1–88Google Scholar
  48. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  49. Rutishauser T (2009) Historical phenology in Central Europe. Seasonality and climate during the past 500 years. Geographica Bernensia, vol. G 82Google Scholar
  50. Rutishauser T, Luterbacher J, Jeanneret F, Pfister C, Wanner H (2007) A phenology-based reconstruction of interannual changes in past spring seasons. J Geophys Res 112:G04016. doi: 10.1029/2006JG000382 CrossRefGoogle Scholar
  51. Sarvas R (1972) Investigations on the annual cycle of development of forest trees. Active period. Commun Inst For Fenn 76:1–110Google Scholar
  52. Sarvas R (1974) Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy. Commun Inst For Fenn 84:1–101Google Scholar
  53. Schaber J, Badeck F-W (2002) Evaluation of methods for the combination of phenological time series and outlier detection. Tree Phys 22:973–982CrossRefGoogle Scholar
  54. Shindell DT, Schmidt GA, Mann ME, Faluvegi G (2004) Dynamic winter climate response to large tropical volcanic eruptions since 1600. J Geophys Res 109:D05104. doi: 10.1029/2003JD004151 CrossRefGoogle Scholar
  55. Tarand A, Kuiv P (1994) The beginning of the rye harvest—a proxy indicator of summer climate in the Baltic Area. Paleoclimate Res 13:61–72Google Scholar
  56. Terhivuo J, Kubin E, Karhu J (2009) Phenological observation since the days of Linné in Finland. In: Special issue COST action 725-WGI. Ital J Agrometeorol 14(1):45–49Google Scholar
  57. Tietäväinen H, Tuomenvirta H, Venäläinen A (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. Int J Climatol 30(15):2247–2256CrossRefGoogle Scholar
  58. Tuomenvirta H (2004) Reliable estimation of climatic variations in Finland. Dissertation. Finnish Meteorological Institute, Vantaa, FinlandGoogle Scholar
  59. Turpeinen O (1985) Kainuun historia II. Väestö ja talous 1721–1982. Kainuun Sanomain Kirjapaino Oy, KajaaniGoogle Scholar
  60. van Vliet AJH, de Groot RS, Bellens Y, Braun P, Brügger R, Bruns E, Clevers J, Estreguil C, Flechsig M, Jeanneret F, Maggi M, Martens P, Menne B, Menzel A, Sparks T (2003) European Phenology Network. Int J Biometeorol 47:202–212CrossRefGoogle Scholar

Copyright information

© ISB 2012

Authors and Affiliations

  • Jari Holopainen
    • 1
    • 5
    Email author
  • Samuli Helama
    • 2
  • Hanna Lappalainen
    • 3
    • 4
  • Hilppa Gregow
    • 1
  1. 1.Climate Research and ApplicationsFinnish Meteorological InstituteHelsinkiFinland
  2. 2.Finnish Forest Research InstituteRovaniemiFinland
  3. 3.Department of PhysicsUniversity of HelsinkiRovaniemiFinland
  4. 4.Research and DevelopmentFinnish Meteorological InstituteHelsinkiFinland
  5. 5.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations