International Journal of Biometeorology

, Volume 57, Issue 1, pp 59–66 | Cite as

Thermographic evaluation of climatic conditions on lambs from different genetic groups

  • Tiago do Prado Paim
  • Bárbara Oliveira Borges
  • Paulo de Mello Tavares Lima
  • Edgard Franco Gomes
  • Bruno Stéfano Lima Dallago
  • Rossala Fadel
  • Adriana Morato de Menezes
  • Helder Louvandini
  • Maria Eugênia Andrighetto Canozzi
  • Júlio Otavio Jardim Barcellos
  • Concepta McManus
Original Paper

Abstract

In production systems the characterization of genetic resources in relation to their capacity to respond to environmental conditions is necessary. The objective of this study was to evaluate the use of infrared thermography for separation of animals from different genetic groups and determine which phenotypic traits are important for climatic adaptation. A total of 126 suckling lambs from four different genetic groups (Santa Inês – SI, Bergamasca – B, Bergamasca X Santa Inês – BS, and Ile de France X Santa Inês – IL) were used. The animals were divided into two groups, one housed and another in an outside paddock. Thermograph photographs were taken at four-hour intervals over three full days. Temperatures of the nose, skull, neck, fore and rear flanks and rump were measured, as well as coat depth, the density and length of hairs, reflectance and color. The daily temperature range during the experimental period was more than 20°C, with animals experiencing heat (12 h to 15 h) and cold (24 h to 4 h) stress. The three main phenotypic traits that influenced genetic group separation were hair density, height of coat, and length of hairs. Thermograph temperatures were able to detect different responses of the genetic groups to the environment. Therefore, infrared thermography is a promising technique to evaluate the response of animals to the environment and to differentiate between genetic groups.

Keywords

Bioclimatology Coat traits Housing Infrared Thermal stress Tropical conditions 

Notes

Acknowledgements

To CNPq and INCT-Pecuária (CNPq-FAPEMIG) for research scholarships, as well as FAP-DF and FINATEC for financial support.

References

  1. Alexander G, Lynch JJ, Mottershead BE, Donnelly JB (1980) Reduction in lamb mortality by means of grass wind-breaks: results of a five-year study. Proceedings of 13th Australian Society of Animal Production, pp 329–332Google Scholar
  2. Baêta FC, Souza CF (1997) Ambiência em edificações rurais: conforto térmico. UFV, Viçosa/MGGoogle Scholar
  3. Bond J, McDowell RE (1972) Reproductive performance and physiological responses of beef females as affected by a prolonged high environmental temperature. J Anim Sci 35:820–829Google Scholar
  4. Burgos JJ (1979) Clima tropical y subtropical. In: Helman MB (ed) Ganadería tropical. El Ateneo, Buenos Aires, pp 1–28Google Scholar
  5. Cardoso CC, Lima FG, Costa G, Ribeiro CS, Oliveira N, Cardoso D, Laudares K, Junior R, Oliveira BEM, Louvandini H, McManus C (2010) Tolerância ao calor em animais mestiços de ovinos. Proceedings of 47ª Reunião Anual da Sociedade Brasileira de Zootecnia, Salvador, pp 1–3Google Scholar
  6. Castanheira M, Paiva SR, Louvandini H, Landim A, Fiorvanti MCS, Dallago BS, Correa PS, McManus C (2010) Use of heat tolerance traits in discriminating between groups of sheep in central Brazil. Trop Anim Health Prod 42:1821–1828. doi:10.1007/s11250-010-9643-x CrossRefGoogle Scholar
  7. Chimineau P (1993) Médio ambiente y reproducción animal. World Anim Rev 77:2–14Google Scholar
  8. Forrest RH, Hickford JGH, Wynyard J, Merrick N, Hogan A, Frampton C (2006) Polymorphism at the beta(3)-adrenergic receptor (ADRB3) locus of Merino sheep and its association with lamb mortality. Anim Genet 37(5):465–468CrossRefGoogle Scholar
  9. Foster LA, Fourie PJ, Neser FWC (2009) Effect of heat stress on six beef breeds in the Zastron district: The significance of breed, coat colour and coat type. S Afr J Anim Sci 39:224–228Google Scholar
  10. Fraser O, Ritchie JSD, Fraser AF (1975) The term "stress" in a veterinary context. Br Vet J 131(6):653–662Google Scholar
  11. Gughan JB, Mader TL, Holt SM, Lisle A (2008) A new heat load index for feedlot cattle. J Anim Sci 86:226–234. doi:10.2527/jas.2007-0305 CrossRefGoogle Scholar
  12. Habeeb ALM, Murray LFM, Kamal TH (1992) Farm animals and the environment. CAB, CambridgeGoogle Scholar
  13. Holmes CW (1981) A note on the protection provided by the hair coat or fleece of the animal against the thermal effects of simulated rain. Anim Prod 32:225–226CrossRefGoogle Scholar
  14. Holst GC (2000) Common sense approach to thermal imaging. SPIE Optical Engineering Press, WashingtonGoogle Scholar
  15. Intergovernmental Panel on Climate Change – IPCC (2007) The physical science basis, 4th assessment report. Cambridge University Press, CambridgeGoogle Scholar
  16. Lefcourt AM, Adams WR (1996) Radiotelemetry measurement of body temperatures of feedlot steers during summer. J Anim Sci 74:2633–2640Google Scholar
  17. Maia ASC, Silva RG, Andrade PC (2009) Efeitos da temperatura e da movimentação do ar sobre o isolamento térmico do velo de ovinos em câmara climática. Rev Bras Zootec 38(1):104–108. doi:10.1590/S1516-35982009000100014 CrossRefGoogle Scholar
  18. Marai I, Haeeb A (2009) Buffalo's biological functions as affected by heat stress—a review. Livest Sci 127:89–109CrossRefGoogle Scholar
  19. Marai IFM, El-Darawany AA, Fadiel A, Abdel-Hafez MAM (2007) Physological traits as affected by heat stress in sheep: a review. Small Rumin Res 71:1–12. doi:10.1016/j.smallrumres.2006.10.003 CrossRefGoogle Scholar
  20. McCutcheon SN, Holmes CW, McDonald MF (1981) The starvation-exposure syndrome and neonatal lamb mortality: a review. Proceedings of 14th New Zealand Society of Animal Production, pp 209–217Google Scholar
  21. McManus C, Paludo GR, Louvandini H, Gugel R, Sasaki LCB, Paiva SR (2009) Heat tolerance in Brazilian sheep: physiological and blood parameters. Trop Anim Health Prod 41:95–101. doi:10.1007/s11250-008-9162-1 CrossRefGoogle Scholar
  22. McManus C, Louvandini H, Gugel R, Sasaki LCB, Bianchini E, Bernal FEM, Paiva SR, Paim TP (2011) Skin and coat traits in sheep in Brazil and their relation with heat tolerance. Trop Anim Health Prod 43:121–126. doi:10.1007/s11250-010-9663-6 CrossRefGoogle Scholar
  23. Monty DE, Kelley LM, Rice WR (1991) Acclimatization of St.-Croix, Karakul and Rambouillet sheep to intense and dry summer heat. Small Rumin Res 4:379–392. doi:10.1016/0921-4488(91)90083-3 CrossRefGoogle Scholar
  24. Nóbrega JE Jr, Riet-Correa F (2005) Mortalidade perinatal de ovinos. Pesqui Vet Bras 25(3):171–178CrossRefGoogle Scholar
  25. Paiva SR, Silvério VC, Egito AA, McManus C, Faria DA, Mariante AS, Castro SR, Albuquerque MSM, Dergam JA (2005) Genetic variability of the Brazilian hair sheep breeds. Pesq Agrop Brasileira 40(9):887–893. doi:10.1590/S0100-204X200500090008 CrossRefGoogle Scholar
  26. Radostits OM, Gay CC, Blood DC, Hinchcliff KW (2002) Clínica veterinária. Guanabara Koogan, Rio de JaneiroGoogle Scholar
  27. Silva RG (2000) Introdução à bioclimatologia animal. Nobel, São PauloGoogle Scholar
  28. Titto EAL (1998) Clima: influência na produção de leite. Proceedings of 1º Simpósio Brasileiro de Ambiência na Produção de Leite, Piracicaba, pp 10–23Google Scholar
  29. Westland S (2003) Review of the CIE system of colorimetry and its use in dentistry. J Esthet Restor Dent 15(1):5–12CrossRefGoogle Scholar
  30. Young BA, Degen AA (1981) Thermal influences on ruminants. In: Clark JA (ed) Environmental aspects of housing for animal production. Butterworths, London, pp 167–180Google Scholar

Copyright information

© ISB 2012

Authors and Affiliations

  • Tiago do Prado Paim
    • 1
    • 5
  • Bárbara Oliveira Borges
    • 2
  • Paulo de Mello Tavares Lima
    • 3
  • Edgard Franco Gomes
    • 1
  • Bruno Stéfano Lima Dallago
    • 3
  • Rossala Fadel
    • 3
  • Adriana Morato de Menezes
    • 3
  • Helder Louvandini
    • 1
  • Maria Eugênia Andrighetto Canozzi
    • 4
  • Júlio Otavio Jardim Barcellos
    • 4
  • Concepta McManus
    • 4
  1. 1.Center of Nuclear Energy in AgricultureCENA/Universidade de São PauloPiracicabaBrazil
  2. 2.Universidade Paulista “Julio Mesquita”- UNESPJaboticabalBrazil
  3. 3.Faculdade de Agronomia e Medicina VeterináriaUniversidade de Brasília - UnBBrasíliaBrazil
  4. 4.Animal Production DepartmentUniversidade Federal do Rio Grande do Sul – UFRGSPorto AlegreBrazil
  5. 5.Centro de Energia Nuclear na AgriculturaPiracicabaBrazil

Personalised recommendations