Advertisement

International Journal of Biometeorology

, Volume 56, Issue 6, pp 1145–1158 | Cite as

Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia

  • Maja Telišman PrtenjakEmail author
  • Lidija Srnec
  • Renata Peternel
  • Valentina Madžarević
  • Ivana Hrga
  • Barbara Stjepanović
Original Paper

Abstract

We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002–2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m3) for our analysis: period A (3–4 September 2002) and period B (6–7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002–2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m3. Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.

Keywords

Slope winds Urban heat island circulation Recirculation of pollen grains WRF model Regional transport 

Notes

Acknowledgement

This work was supported by the Ministry of Science, Education and Sports (grants No. 119-1193086-1311; No. 0121999).

References

  1. Arritt RW, Clark CA, Goggi S, Sanchez HL, Westgate ME, Riese JM (2007) Lagrangian numerical simulations of canopy air flow effects on maize pollen dispersal. Field Crop Res 102:151–162CrossRefGoogle Scholar
  2. Aylor DE (2002) Settling speed of corn (Zea mays) pollen. J Aerosol Sci 33:1601–1607CrossRefGoogle Scholar
  3. Baklanov A, Grisogono B (2007) Atmospheric boundary layers: nature, theory and applications to environmental modelling and security. Springer, New YorkGoogle Scholar
  4. Belmonte J, Alarcon M, Avila A, Scialabba E, Pino D (2008) Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). Int J Biometeorol 52:675–687. doi: 10.1007/s00484-008-0160-9 CrossRefGoogle Scholar
  5. Belušić D, Strelec Mahović N (2009) Detecting and following atmospheric disturbances with a potential to generate meteotsunamis in the Adriatic. Phys Chem Earth 34:918–927CrossRefGoogle Scholar
  6. Brunet Y, Foueillassar F, Audran A, Garrigou D, Dayau S, Tardieu L (2003) Evidence for long-range transport of viable maize pollen. In: Boelt B (ed) Proceedings of the 1st European Conference on the Co-existence of Genetically Modified Crops with Conventional and Organic Crops. Helsingør, Denmark, 13–14 NovemberGoogle Scholar
  7. Dahl A, Strandhede S-O, Wihl J-A (1999) Ragweed-An allergy risk in Sweden? Aerobiologia 15:293–297CrossRefGoogle Scholar
  8. De Morton J, Bye J, Pezza A, Newbigin E (2011) On the causes of variability in amounts of airborne grass pollen in Melbourne, Australia. Int J Biometeorol 55:613–622. doi: 10.1007/s00484-010-0361-x CrossRefGoogle Scholar
  9. Fortezza F, Georgiadis T, Alberti L, Bonasoni P, Cavallini D, Giovanelli G, Ravegnani FA (1995) Numerical-simulation of the transport of surface ozone along a Mediterranean coastal area. Nuovo Cimento (C) 18:403–410Google Scholar
  10. Hrga I, Mitić B, Alegro A, Dragojlović D, Stjepanović B, Puntarić D (2010) Aerobiology of Sweet Chestnut (Castanea sativa Mill.) in North-West Croatia. Coll Antropol 34:501–507Google Scholar
  11. Izquierdo R, Belmonte J, Avila A, Alarcon M, Cuevas E, Alonso-Perez S (2011) Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands). Int J Biometeorol 55:67–85CrossRefGoogle Scholar
  12. Jäger S (1991) Allergenic significance of Ambrosia (ragweed). In: D'Amato G, Spieksma FthM, Bonini S (eds) Allergenic pollens and pollinosis in Europe. Blackwell, Oxford, pp 125–127Google Scholar
  13. Jarosz N, Loubet B, Durand B, McCartney A, Foueillassar Z, Huber L (2003) Field measurements of airborne concentration and deposition rate of maize pollen. Agric For Meteorol 119:37–51CrossRefGoogle Scholar
  14. Jiménez MA, Mira A, Cuxart J, Luque A, Alonso S (2008) Verification of a clear-sky mesoscale simulation using satellite-derived surface temperatures. Mon Weather Rev 136:5148–5161. doi: 10.1175/2008MWR2461.1 CrossRefGoogle Scholar
  15. Kasprzyk I (2008) Non-native Ambrosia pollen in the atmosphere of Rzeszów (SE Poland); evaluation of the effects of weather conditions on daily concentrations and starting dates of the pollen seasons. Int J Biometeorol 52:341–351. doi: 10.1007/s00484-007-0129-0 CrossRefGoogle Scholar
  16. Kasprzyk I, Myszkowska D, Grewling Ł, Stach A, Šikoparija B, Skjøth CA, Smith M (2011) The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznań, Poland: investigation of trends and possible transport of Ambrosia pollen from Ukraine. Int J Biometeorol 55:633–644. doi: 10.1007/s00484-010-0376-3 CrossRefGoogle Scholar
  17. Knox R (1993) Grass pollen, thunderstorms and asthma. Clin Exp Allergy 23:354–359CrossRefGoogle Scholar
  18. Köppen W (1931) Grundriss der Klimakunde (in German). De Gruyter, BerlinGoogle Scholar
  19. Lisac I (1984) The wind in Zagreb (A contribution to the knowledge of climate of the city of Zagreb, II). Geofizika 1:47–134Google Scholar
  20. Makjanić B (1977) A short description of the climate in Zagreb (in Croatian). Radovi-Geofizički Institut III serija, Zagreb; Zagreb:125–176Google Scholar
  21. Makra L, Juhász M, Béczi R, Borsos E (2005) The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana 44:57–64CrossRefGoogle Scholar
  22. Makra L, Tombácz S, Bálint B, Sümeghy Z, Sánta T, Hirsch T (2008) Influences of meteorological parameters and biological and chemical air pollutants to the incidence of asthma and rhinitis. Clim Res 37:99–119. doi: 10.3354/cr00752 CrossRefGoogle Scholar
  23. Makra L, Sánta T, Matyasovszky I, Damialis A, Karatzas K, Bergmann KC, Vokou D (2010) Airborne pollen in three European cities: Detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. J Geophys Res 115:D24220. doi: 10.1029/2010JD014743 CrossRefGoogle Scholar
  24. Nitis T, Kitsiou D, Klaić ZB, Prtenjak MT, Moussiopoulos N (2005) The effects of basic flow and topography on the development of the sea breeze over a complex coastal environment. Q J R Meteorol Soc 131:305–328CrossRefGoogle Scholar
  25. Oke TR (1995) The heat island of the urban boundary layer: characteristics, causes and effects. In: Cermak JE, Davenport AG, Plate EJ, Viegas DX (eds) Wind climates in cities. Kluwer, Dordecht, pp 81–107Google Scholar
  26. Pérez-Landa G, Ciais P, Sanz MJ, Gioli B, Miglietta F, Palau JL, Gangoiti G, Millán MM (2007) Mesoscale circulations over complex terrain in the Valencia coastal region, Spain—Part 1: Simulation of diurnal circulation regimes. Atmos Chem Phys 7:1835–1849CrossRefGoogle Scholar
  27. Peternel R, Čulig J, Srnec L, Mitić B, Vukušić I, Hrga I (2005) Variation in ragweed (Ambrosia artemisiifolia L.) pollen concentration in central Croatia, 2002-2003. Ann Agric Environ Med 12:11–16Google Scholar
  28. Peternel R, Milanović SM, Srnec L (2008) Airborne ragweed (Ambrosia artemisiifolia L.) pollen content in the city of Zagreb and implications on pollen allergy. Ann Agric Environ Med 15:125–130Google Scholar
  29. Prtenjak MT, Viher M, Jurković J (2010) Sea-land breeze development during a summer bora event along the north-eastern Adriatic coast. Q J R Meteorol Soc 136:1554–1571. doi: 10.1002/qj.649 CrossRefGoogle Scholar
  30. Rich TCG (1994) Ragweeds (Ambrosia L.) in Britain. Grana 33:38–43CrossRefGoogle Scholar
  31. Rousseau DD, Duzer D, Etienne JL, Cambon G, Jolly D, Ferrier J, Schevin P (2004) Pollen record of rapidly changing air trajectories to the North Pole. J Geophys Res 109:D06116. doi: 10.1029/2003JD003985 CrossRefGoogle Scholar
  32. Šikoparija B, Smith M, Skjoth CA, Radišić M, Milkovska S, Šimić S, Brandt J (2009) The Pannonian plain as a source of Ambrosia pollen in the Balkans. Int J Biometeorol 53:263–272CrossRefGoogle Scholar
  33. Simpson JE (1994) Sea breeze, and local winds. Cambridge University Press, CambridgeGoogle Scholar
  34. Skamarock WC, Weisman ML (2009) The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon Weather Rev 137:488–494CrossRefGoogle Scholar
  35. Skjøth CA, Smith M, Šikoparija B, Stach A, Myszkowska D, Kasprzyk I, Radišić P, Stjepanović B, Hrga I, Apatini D, Magyar D, Páldy A, Ianovici N (2010) A method for producing airborne pollen source inventories: an example of Ambrosia (ragweed) on the Pannonian plain. Agric For Meteorol 150:1203–1210CrossRefGoogle Scholar
  36. Smith M, Skjøth CA, Myszkowska DAU, Puc M, Stach A, Balwierz Z, Chlopek K, Piotrowska K, Kasprzyk I, Brandt J (2008) Long-range transport of Ambrosia pollen to Poland. Agric For Meteorol 148:1402–1411CrossRefGoogle Scholar
  37. Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimaki A (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50:392–402CrossRefGoogle Scholar
  38. Stach A, Smith M, Skjoth CA, Brandt J (2007) Examining Ambrosia pollen episodes at Poznan (Poland) using back-tajectory analysis. Int J Biometeorol 51:275–286CrossRefGoogle Scholar
  39. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, DordrechtCrossRefGoogle Scholar
  40. Traidl-Hoffmann C, Kasche A, Menzel A, Jakob T, Thiel M, Ring J, Behrendt H (2003) Impact of pollen on human health: more than allergen carriers? Int Arch Allergy Immunol 131:1–13CrossRefGoogle Scholar
  41. Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, New YorkGoogle Scholar
  42. Zaninović K, Gajić-Čapka M, Perčec Tadić M, Vučetić M, Milković J, Bajić A, Cindrić K, Cvitan L, Katušin Z, Kaučić D, Likso T, Lončar E, Lončar Ž, Mihajlović D, Pandžić K, Patarčić M, Srnec L, Vučetić V (2008) Climate atlas of Croatia 1961–1990, 1971–2000. Meteorological and Hydrological Service of Croatia, ZagrebGoogle Scholar
  43. Zink K, Vogel H, Vogel B, Magyar D, Kottmeier C (2011) Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART. Int J Biometeorol. doi: 10.1007/s00484-011-0468-8

Copyright information

© ISB 2012

Authors and Affiliations

  • Maja Telišman Prtenjak
    • 1
    Email author
  • Lidija Srnec
    • 2
  • Renata Peternel
    • 3
  • Valentina Madžarević
    • 1
  • Ivana Hrga
    • 4
  • Barbara Stjepanović
    • 5
  1. 1.Andrija Mohorovičić Geophysical Institute, Department of Geophysics, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Meteorological and Hydrological Service of Croatia, Zagreb, CroatiaZagrebCroatia
  3. 3.University of Applied sciences Velika GoricaVelika GoricaCroatia
  4. 4.“Dr. Andrija Štampar” Institute of Public HealthZagrebCroatia
  5. 5.Geophysical Institute, Department of Geophysics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations