International Journal of Biometeorology

, Volume 56, Issue 3, pp 443–460 | Cite as

Validation of the Fiala multi-node thermophysiological model for UTCI application

  • Agnes Psikuta
  • Dusan Fiala
  • Gudrun Laschewski
  • Gerd Jendritzky
  • Mark Richards
  • Krzysztof Błażejczyk
  • Igor Mekjavič
  • Hannu Rintamäki
  • Richard de Dear
  • George Havenith
Special Issue (UTCI)


The important requirement that COST Action 730 demanded of the physiological model to be used for the Universal Thermal Climate Index (UTCI) was its capability of accurate simulation of human thermophysiological responses across a wide range of relevant environmental conditions, such as conditions corresponding to the selection of all habitable climates and their seasonal changes, and transient conditions representing the temporal variation of outdoor conditions. In the first part of this study, available heat budget/two-node models and multi-node thermophysiological models were evaluated by direct comparison over a wide spectrum of climatic conditions. The UTCI-Fiala model predicted most reliably the average human thermal response, as shown by least deviations from physiologically plausible responses when compared to other models. In the second part of the study, this model was subjected to extensive validation using the results of human subject experiments for a range of relevant (steady-state and transient) environmental conditions. The UTCI-Fiala multi-node model proved its ability to predict adequately the human physiological response for a variety of moderate and extreme conditions represented in the COST 730 database. The mean skin and core temperatures were predicted with average root-mean-square deviations of 1.35 ± 1.00°C and 0.32 ± 0.20°C, respectively.


Physiological model Physiological simulation 



The authors wish to thank COST Office and the Swiss State Secretariat for Education and Research (SBF/SER) for funding this work as part of COST Action 730 under project C06.0023, members of the WG1 of COST Action 730 for their comments and discussions, Dr. Emiel den Hartog from TNO for providing some datasets and hosting a short-term scientific mission in his laboratory, and to Dr. Veronika Meyer and Dr. René Rossi from Laboratory for Protection and Physiology at Empa for their editorial input.

Supplementary material

484_2011_450_Fig17_ESM.gif (23 kb)
Fig. S1

Comparison of dry heat loss (Qdry) predicted using different models for a wide range of environmental temperature (Ta). For model abbreviations see Table 1 (GIF 23 kb)

484_2011_450_MOESM1_ESM.eps (789 kb)
High resolution image (EPS 789 kb)
484_2011_450_Fig18_ESM.gif (26 kb)
Fig. S2

Comparison of sweat evaporation at the skin (Esk) responses predicted using different models for a wide range of environmental temperature (Ta). For model abbreviations see Table 1 (GIF 26 kb)

484_2011_450_MOESM2_ESM.eps (996 kb)
High resolution image (EPS 996 kb)
484_2011_450_Fig19_ESM.gif (439 kb)
Table S1

General description and root mean square deviations (rmsd) and mean deviations (bias) of all experiments of the COST 730 database for the validation study. Rcl and Recl are clothing intrinsic thermal and evaporative resistances and Rt is clothing total thermal resistance. (GIF 439 kb)

484_2011_450_MOESM3_ESM.eps (5.5 mb)
High resolution image (EPS 5629 kb)


  1. Barlow RJ (1989) Different definitions of the standard deviation. In: Sandiford DJ, Mandl F, Phillips AC (eds) Statistics. A guide to the use of statistical methods in the physical sciences. Wiley, Chichester, pp 10–12Google Scholar
  2. Błażejczyk K (1994) New climatological-and-physiological model of the human heat balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. Zeszyty IgiPZ PAN 28:27–58Google Scholar
  3. Bluestein M, Zecher J (1999) A new approach to an accurate wind chill factor. Bull Am Meteorol Soc 80(9):1893–1899CrossRefGoogle Scholar
  4. Daanen HA, van Es EM, de Graaf JL (2006) Heat strain and gross efficiency during endurance exercise after lower, upper, or whole body precooling in the heat. Int J Sports Med (5):379Google Scholar
  5. Fanger PO (1970) Thermal comfort. McGraw-Hill, New YorkGoogle Scholar
  6. Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87(5):1957–1972Google Scholar
  7. Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45(3):143–159CrossRefGoogle Scholar
  8. Fiala D, Lomas KJ, Stohrer M (2003) First principles modelling of thermal sensation responses in steady-state and transient conditions. ASHRAE Trans 109:179–186Google Scholar
  9. Fiala D, Psikuta A, Jendritzky G, Paulke S, Nelson DA, van Marken Lichtenbelt WD, Frijns AJH (2010) Physiological modelling for technical, clinical and research applications. Front Biosci S2:939–968. doi: 10.2741/s112 CrossRefGoogle Scholar
  10. Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2011) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol. Special Issue UTCI. doi: 10.1007/s00484-011-0424-7
  11. Gagge AP, Stolwijk JA, Nishi Y (1971) Effective temperature scale, based on a simple model of human physiological regulatory response. ASHRAE J 13(1):58Google Scholar
  12. Gagge AP, Fobelets AP, Berglund PE (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731Google Scholar
  13. Gonzalez RR, McLellan TM, Withey WR, Chang SK, Pandolf KB (1997) Heat strain models applicable for protective clothing systems: comparison of core temperature response. J Appl Physiol 83(3):1017–1032Google Scholar
  14. Hardy JD, Stolwijk JA (1966) Partitional calorimetric studies of man during exposures to thermal transients. J Appl Physiol 21(6):1799Google Scholar
  15. Haslam RA, Parsons KC (1988) Quantifying the effects of clothing for models of human response to the thermal environment. Ergonomics 31(12):1787–1806CrossRefGoogle Scholar
  16. Havenith G (2001) Individualized model of human thermoregulation for the simulation of heat stress response. J Appl Physiol 90(5):1943–1954Google Scholar
  17. Havenith G, Nilsson H (2004) Correction of clothing insulation for movement and wind effects, a meta-analysis. Eur J Appl Physiol 92:636–640CrossRefGoogle Scholar
  18. Havenith G, Nilsson HO (2005) Correction of clothing insulation for movement and wind effects, a meta-analysis (vol 92, pg 636, 2004). Eur J Appl Physiol 93(4):506–506. doi: 10.1007/s00421-004-1267-2 CrossRefGoogle Scholar
  19. Havenith G, Fiala D, Błazejczyk K, Richards M, Broede P, Holmér I, Rintamaki H, Benshabat Y, Jendritzky G (2011) The UTCI-clothing model. Int J Biometeorol. Special Issue UTCI. doi: 10.1007/s00484-011-0451-4
  20. Holmer I, Nilsson H, Havenith G, Parsons K (1999) Clothing convective heat exchange—proposal for improved prediction in standards and models. Ann Occup Hyg 43(5):329–337Google Scholar
  21. Höppe P (1984) Die Energiebilanz des Menschen. University Munich, Munich, GermanyGoogle Scholar
  22. Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43(2):71–75CrossRefGoogle Scholar
  23. Huizenga C, Zhang H, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36(6):691–699CrossRefGoogle Scholar
  24. ISO7933 (1989) Hot environments—analytical determination and interpretation of heat stress using calculation of required sweat rate.Google Scholar
  25. ISO9920 (2007) Ergonomics of the thermal environment—estimation of thermal insulation and water vapour resistance of a clothing ensemble.Google Scholar
  26. Jack A (2010) Einfluss hoch funktioneller Sporttextilien auf die Thermoregulation von Ausdauerathleten bei unterschiedlichen Umgebungstemperaturen. PhD thesis, Bayreuth University, BayreuthGoogle Scholar
  27. Kubaha K, Fiala D, Toftum J, Taki AH (2004) Human projected area factors for detailed direct and diffuse solar radiation analysis. Int J Biometeorol 49(2):113–129CrossRefGoogle Scholar
  28. Lind AR (1963) A physiological criterion for setting thermal environmental limits for everyday work. J Appl Physiol 18:51–56Google Scholar
  29. Makinen T, Gavhed D, Holmer I, Rintamaki H (2000) Thermal responses to cold wind of thermoneutral and cooled subjects. Eur J Appl Physiol 81(5):397–402CrossRefGoogle Scholar
  30. Moran DS, Shitzer A, Pandolf KB (1998) A physiological strain index to evaluate heat stress. Am J Physiol Regul Integr Comp Physiol 275(1):R129–R134Google Scholar
  31. Osczevski RJ (1995) The basis of wind chill. Arctic 48(4):372–382Google Scholar
  32. Osczevski R, Bluestein M (2005) The new wind chill equivalent temperature chart. Bull Am Meteorol Soc 86 (10):1453–1458. doi: 10.1175/bams-86-10-1453 Google Scholar
  33. Pickup J, De Dear R (1999) An outdoor thermal comfort index (OUT_SET*). Part I—The model and its assumptions. In: de Dear R, Kalma J, Oke T, Auliciems A (eds) Proceedings of Biometeorology and urban climatology at the turn of the millenium. Sydney, WCASP-50, WMO/TD No. 1026, pp 279–283Google Scholar
  34. Psikuta A, Fiala D, Richards M (2006) Validation of the Fiala thermo-physiological model for COST 730 using human and clothing data. Part 1. STSM Scientific Report. Karlsruhe University, KarlsruheGoogle Scholar
  35. Psikuta A, Fiala D, Richards M (2007a) Further validation of the Fiala thermo-physiological model for COST 730 using human and clothing data. Part 2. STSM Scientific Report. Karlsruhe University, KarlsruheGoogle Scholar
  36. Psikuta A, Fiala D, Richards M (2007b) Further validation of the Fiala thermo-physiological model for COST 730 using human and clothing data. Part 3. STSM Scientific Report. TNO, SoestebergGoogle Scholar
  37. Shitzer A (2006) Wind-chill-equivalent temperatures: regarding the impact due to the variability of the environmental convective heat transfer coefficient. Int J Biometeorol 50(4):224–232. doi: 10.1007/s00484-005-0011-x CrossRefGoogle Scholar
  38. Stolwijk JA, Nadel ER, Wenger CB, Roberts MF (1973) Development and application of a mathematical model of human thermoregulation. Arch Sci Physiol 27(3):A303–A310Google Scholar
  39. Tanabe S, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34(6):637–646CrossRefGoogle Scholar
  40. Wissler EH (1985) Mathematical simulation of human thermal behaviour using whole body models. In: Shitzer A, Eberhart RC (eds) Heat transfer in medicine and biology. Analysis and applications, vol 1. Plenum, New York, pp 325–374Google Scholar
  41. Wissler EH (2003) Probability of survival during accidental immersion in cold water. Aviat Space Environ Med 74(1):47–55Google Scholar

Copyright information

© ISB 2011

Authors and Affiliations

  • Agnes Psikuta
    • 1
  • Dusan Fiala
    • 2
    • 3
  • Gudrun Laschewski
    • 4
  • Gerd Jendritzky
    • 5
  • Mark Richards
    • 1
    • 6
  • Krzysztof Błażejczyk
    • 7
  • Igor Mekjavič
    • 8
  • Hannu Rintamäki
    • 9
  • Richard de Dear
    • 10
  • George Havenith
    • 11
  1. 1.Empa: Laboratory for Physiology and ProtectionSt. GallenSwitzerland
  2. 2.ErgonSim-Comfort Energy EfficiencyStuttgartGermany
  3. 3.IBBTEUniversity of StuttgartStuttgartGermany
  4. 4.Centre for Human-Biometeorological ResearchDeutscher WetterdienstFreiburgGermany
  5. 5.Meteorological InstituteUniversity of FreiburgFreiburgGermany
  6. 6.humanikin GmbHThalSwitzerland
  7. 7.Institute of Geography and Spatial OrganizationWarsawPoland
  8. 8.Jozef Stefan InstituteLjubljanaSlovenia
  9. 9.Finnish Institute of Occupational HealthOuluFinland
  10. 10.Faculty of Architecture, Design & PlanningThe University of SydneySydneyAustralia
  11. 11.Environmental Ergonomics Research CentreLoughborough UniversityLoughboroughUK

Personalised recommendations