International Journal of Biometeorology

, Volume 56, Issue 3, pp 429–441 | Cite as

UTCI-Fiala multi-node model of human heat transfer and temperature regulation

  • Dusan Fiala
  • George Havenith
  • Peter Bröde
  • Bernhard Kampmann
  • Gerd Jendritzky
Special Issue (UTCI)


The UTCI-Fiala mathematical model of human temperature regulation forms the basis of the new Universal Thermal Climate Index (UTC). Following extensive validation tests, adaptations and extensions, such as the inclusion of an adaptive clothing model, the model was used to predict human temperature and regulatory responses for combinations of the prevailing outdoor climate conditions. This paper provides an overview of the underlying algorithms and methods that constitute the multi-node dynamic UTCI-Fiala model of human thermal physiology and comfort. Treated topics include modelling heat and mass transfer within the body, numerical techniques, modelling environmental heat exchanges, thermoregulatory reactions of the central nervous system, and perceptual responses. Other contributions of this special issue describe the validation of the UTCI-Fiala model against measured data and the development of the adaptive clothing model for outdoor climates.


Physiological simulation Human exposure Outdoor environment Multi-segmental model Thermoregulatory system 


  1. Aschoff VJ, Wever R (1958) Kern und Schale im Wärmehaushalt des Menschen. Naturwissenschaften 45:477–485CrossRefGoogle Scholar
  2. ASHRAE (2004) ANSI/ASHRAE standard 55: thermal environmental conditions for human occupancy. American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc, AtlantaGoogle Scholar
  3. Azer NZ, Hsu S (1977) The prediction of thermal sensation from a simple model of human physiological regulatory response. ASHRAE Trans 83:88–102Google Scholar
  4. Burton AC (1937) The application of the theory of heat flow to the study of energy metabolism. J Nutrition:487–533Google Scholar
  5. Bröde P, Fiala D, Blazejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2011a) Deriving the Operational Procedure for the Universal Thermal Climate Index UTCI. Int J BiometeorolGoogle Scholar
  6. Bröde P, Krüger EL, Rossi FA, Fiala D (2011b) Predicting urban outdoor thermal comfort by the universal thermal climate index UTCI – A case study in southern Brazil. Int J BiometeorolGoogle Scholar
  7. Crawshaw LI, Nadel ER, Stolwijk JAJ, Stamford BA (1975) Effect of local cooling on sweating rate and cold sensation. Pflügers Arch 354:19–27CrossRefGoogle Scholar
  8. Fanger PO (1973) Thermal comfort - analysis and applications in environmental engineering. McGraw-Hill, New YorkGoogle Scholar
  9. Fiala D (1998) Dynamic simulation of human heat transfer and thermal comfort. PhD thesis, De Montfort University, UKGoogle Scholar
  10. Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972Google Scholar
  11. Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159CrossRefGoogle Scholar
  12. Fiala D, Lomas KJ, Stohrer M (2003) First principles modelling of thermal sensation responses in steady state and transient boundary conditions. ASHRAE Trans 109(1):179–186Google Scholar
  13. Fiala D, Bunzl A, Lomas KJ, Cropper PC, Schlenz D (2004) A new simulation system for predicting human thermal and perceptual responses in vehicles. In: Schlenz D (ed) PKW-Klimatisierung III: Klimakonzepte, Regelungsstrategien und Entwicklungsmethoden. Expert Verlag Renningen, Haus der Technik Fachbuch Band 27: 147–162Google Scholar
  14. Fiala D, Psikuta A, Jendritzky G, Paulke S, Nelson DA, van Marken Lichtenbelt WD, Frijns AJH (2010) Physiological modeling for technical, clinical and research applications. Front Biosci S2:939–968CrossRefGoogle Scholar
  15. Gagge AP, Fobelets AP, Berglund PE (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731Google Scholar
  16. Gordon RG, Roemer RB, Horvath SM (1976) A mathematical model of the human temperature regulatory system - transient cold exposure response. IEEE Trans Biomed Eng 23:434–444CrossRefGoogle Scholar
  17. Havenith G, Fiala D, Blazejczyk K, Richards M, Bröde P, Holmér I, Rintamäki H, Benshabat Y, Jendritzky G (2011) The UTCI-Clothing Model. Int J BiometeorolGoogle Scholar
  18. Huizenga C, Zhang H, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36:691–699CrossRefGoogle Scholar
  19. ISO 7730 (2005) Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Organisation for Standardisation, GeneveGoogle Scholar
  20. Jones BW, Ogawa Y (1992) Transient interaction between the human and the thermal environment. ASHRAE Trans 98:189–196Google Scholar
  21. Kampmann B, Bröde P, Fiala D (2011) Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS. Int J BiometeorolGoogle Scholar
  22. Kubaha K, Fiala D, Toftum J, Taki AH (2004) Human projected area factors for detailed direct and diffuse solar radiation analysis. Int J Biometeorol 49:113–129CrossRefGoogle Scholar
  23. Kubaha K (2005) Asymmetric radiation and human thermal comfort: PhD thesis, De Montfort University, UKGoogle Scholar
  24. McCullough EA, Jones BW, Huck J (1985) A comprehensive data base for estimating clothing insulation. ASHRAE Trans 92:29–47Google Scholar
  25. McCullough EA, Jones BW, Tamura T (1989) A data base for determining the evaporative resistance of clothing. ASHRAE Trans 95:316–328Google Scholar
  26. Nadel ER, Bullard RW, Stolwijk JAJ (1971) Importance of skin temperature in the regulation of sweating. J Appl Physiol 31:80–87Google Scholar
  27. Nadel ER, Mitchell JW, Stolwijk JAJ (1973) Differential thermal sensitivity in the human skin. Pflügers Arch 340:71–76CrossRefGoogle Scholar
  28. Oke TR (1987) Boundary layer climates. Routledge, LondonGoogle Scholar
  29. Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122Google Scholar
  30. Psikuta A Fiala D, Laschewski G, Jendritzky G, Richards M, Blazejczyk K, Mekjavic I, Rintamäki H, Havenith G, de Dear R (2011) Evaluation of the Fiala multi-node thermophysiological model for UTCI application. Int J BiometeorolGoogle Scholar
  31. Richards M, Fiala D (2004) Modelling fire-fighter responses to exercise and asymmetric IR-radiation using a dynamic multi-mode model of human physiology and results from the Sweating Agile thermal Manikin (SAM). Eur J Appl Physiol 92:649–653CrossRefGoogle Scholar
  32. Stolwijk JAJ (1971) A mathematical model of physiological temperature regulation in man. NASA contractor report, NASA CR-1855, Washington DCGoogle Scholar
  33. Tanabe S, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energ Buildings 34:637–646CrossRefGoogle Scholar
  34. Wang X-L (1990) Convective heat losses from segments of the human body. Climate Buildings 3:8–14Google Scholar
  35. Weinbaum S, Jiji LM, Lemons DE (1984) Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer - part I: anatomical foundation and model conceptualization. ASME J Biomech Eng 106:321–330CrossRefGoogle Scholar
  36. Wissler EH (1985) Mathematical simulation of human thermal behavior using whole body models. In: Shitzer A, Eberhart RC (eds) Heat transfer in medicine and biology – analysis and applications. Plenum, New York, pp 325–373Google Scholar

Copyright information

© ISB 2011

Authors and Affiliations

  • Dusan Fiala
    • 1
    • 2
  • George Havenith
    • 3
  • Peter Bröde
    • 4
  • Bernhard Kampmann
    • 5
  • Gerd Jendritzky
    • 6
  1. 1.ErgonSim – Comfort Energy EfficiencyStuttgartGermany
  2. 2.Institute of Building Technologies (IBBTE)University of StuttgartStuttgartGermany
  3. 3.Environmental Ergonomics Research CentreLoughborough UniversityLoughboroughUK
  4. 4.Leibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
  5. 5.Division of Applied Physiology, Occupational Medicine and Infectiology, Department of Safety EngineeringBergische Universität WuppertalWuppertalGermany
  6. 6.Meteorological InstituteAlbert-Ludwigs-Universität FreiburgFreiburg im BreisgauGermany

Personalised recommendations