International Journal of Biometeorology

, Volume 55, Issue 6, pp 867–877 | Cite as

A comparison of methods to estimate seasonal phenological development from BBCH scale recording

  • Christine Cornelius
  • Hannes Petermeier
  • Nicole Estrella
  • Annette Menzel
Original Paper

Abstract

The BBCH scale is a two-digit key of growth stages in plants that is based on standardised definitions of plant development stages. The extended BBCH scale, used in this paper, enables the coding of the entire development cycle of all mono- and dicotyledonous plants. Using this key, the frequency distribution of phenological stages was recorded which required a less intense sampling frequency. The onset dates of single events were later estimated from the frequency distribution of BBCH codes. The purpose of this study was to present four different methods from which those onset dates can be estimated. Furthermore, the effects of (1) a less detailed observation key and (2) changes in the sampling frequency on estimates of onset dates were assessed. For all analyses, phenological data from the entire development cycle of four grass species were used. Estimates of onset dates determined by Weighted Plant Development (WPD), Pooled pre-/post-Stage Development (PSD), Cumulative Stage Development (CSD) and Ordinal Logistic Regression (OLR) methods can all be used to determine the phenological progression of plants. Moreover, results show that a less detailed observation key still resulted in similar onset dates, unless more than two consecutive stages were omitted. Further results reveal that the simulation of a less intense sampling frequency had only small impacts on estimates of onset dates. Thus, especially in remote areas where an observation interval of a week is not feasible, estimates derived from the frequency distribution of BBCH codes appear to be appropriate.

Keywords

Flowering Grassland Observation key Onset dates Sampling frequency 

Abbreviations

ANOVA

Analysis of Variance

BBCH

Biologische Bundesanstalt, Bundessortenamt and Chemical Industry

CSD

Cumulative Stage Development

DWD

German meteorological service

IPG

International Phenological Gardens

OLR

Ordinal Logistic Regression

PSD

Pooled pre/post Stage Development

USA-NPN

USA National Phenology Network

WPD

Weighted Plant Development

References

  1. Abu-Asab MS, Peterson PM, Shetler SG, Orli SS (2001) Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodivers Conserv 10:597–612CrossRefGoogle Scholar
  2. Agresti A (2007) An introduction to categorical data analysis. Wiley, New York, pp 173–243CrossRefGoogle Scholar
  3. Bazok R, Bareiae JI, Kos T, Euljak TG, Siloviae M, Jelovean S, Kozina A (2009) Monitoring and efficacy of selected insecticides for European corn borer (Ostrinia nubilalis Hubn., Lepidoptera: Crambidae) control. J Pest Sci 82:311–319CrossRefGoogle Scholar
  4. Beggs PJ (2004) Impacts of climate change on aeroallergens: past and future. Clin Exp Allergy 34:1507–1513CrossRefGoogle Scholar
  5. Bleiholder H, van den Boom T, Langelüddecke P, Stauss R (1989) Einheitliche Codierung der phänologischen Stadien bei Kultur- und Schadpflanzen. Gesunde Pflanz 41:381–384Google Scholar
  6. Brügger R (1998) Die phänologische Entwicklung von Buche und Fichte, Beobachtungen, Variabilität, Darstellung und deren Nachvollzug in einem Modell. Geographica Bernensia G 64, BernGoogle Scholar
  7. Bruns E, Chmielewski FM, van Vliet AJH (2003) The global phenological monitoring concept. Towards international standardization of phenological networks. In: Schwarz MD (ed) Phenology: An integrative environmental science. Kluwer, Dordrecht, pp 93–104CrossRefGoogle Scholar
  8. Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112CrossRefGoogle Scholar
  9. Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006) Diverse responses of phenology to global changes in a grassland ecosystem. Proc Natl Acad Sci USA 103:13740–13744CrossRefGoogle Scholar
  10. Defila C, Clot B (2001) Phytophenological trends in Switzerland. Int J Biometeorol 45:203–207CrossRefGoogle Scholar
  11. Deutscher Wetterdienst (1991) Anleitung für die phänologischen Beobachter des deutschen Wetterdienstes (BAPH). Vorschriften und Betriebsunterlagen. Deutscher Wetterdienst 17 (VuB17), OffenbachGoogle Scholar
  12. Emberlin J, Detandt M, Gehrig R, Jaeger S, Nolard N, Rantio-Lehtimaki A (2002) Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. Int J Biometeorol 46:159–170CrossRefGoogle Scholar
  13. Finn GA, Straszewski AE, Peterson V (2007) A general growth stage key for describing trees and woody plants. Ann Appl Biol 151:127–131CrossRefGoogle Scholar
  14. Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691CrossRefGoogle Scholar
  15. Janusauskaite D (2009) The effect of fertilisation intensity on spring triticale productivity and chlorophyll index in foliage. Zemdirb Agric 96:110–123Google Scholar
  16. Kraska P, Okon S, Palys E (2009) Weed infestation of a winter wheat canopy under the conditions of application of different herbicide doses and foliar fertilization. Acta Agrobot 62:193–206Google Scholar
  17. Meier U (1997) BBCH-Monograph. Growth stages of plants – Entwicklungsstadien von Pflanzen – Estadios de las plantas – Développement des Plantes. Blackwelll, BerlinGoogle Scholar
  18. Meier U, Bleiholder H, Buhr L, Feller C, Hack H, Hess M, Lancashire PD, Schnock U, Stauss R, van den Boom T, Weber E, Zwerger P (2009) The BBCH system to coding the phenological growth stages of plants – history and publications. J Kulturpflanz 61:41–52Google Scholar
  19. Menzel A (2002) Phenology: its importance to the global change community. Clim Change 54:379–385CrossRefGoogle Scholar
  20. Menzel A, Estrella N (2001) Plant phenological changes. In: Walther GR, Burga CA, Edwards PJ (eds) “Fingerprints” of Climate Change - Adapted behaviour and shifting species ranges. Kluwer/Plenum, New York, pp 123–137Google Scholar
  21. Menzel A, Estrella N, Testka A (2005) Temperature response rates from long-term phenological records. Clim Res 30:21–28CrossRefGoogle Scholar
  22. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolik P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, vanVliet AH, Wiegolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976CrossRefGoogle Scholar
  23. ÖKL (Österreichisches Kuratorium für Landtechnik und Landentwicklung) (ed) 2006 Bundesweiter Naturkalender zur Belebung des traditionellen Wissens um die Wahl des besten Mähzeitpunktes. ÖKL, ViennaGoogle Scholar
  24. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefGoogle Scholar
  25. Price MV, Waser NM (1998) Effects of experimental warming on plant reproductive phenology in a subalpine meadow. J Ecol 79:1261–1271CrossRefGoogle Scholar
  26. Rodriguez-Rajo JF, Jato V, Fernandez-Gonzalez M, Aira JM (2010) The use of aerobiological methods for forecasting Botrytis spore concentrations in a vineyard. Grana 49:56–65CrossRefGoogle Scholar
  27. Salazar DM, Melgarejo P, Martinez R, Martinez JJ, Hernandez F, Burguera A (2006) Phenological stages of the guava tree (Psidium guajava L.). Sci Hortic 108:157–161CrossRefGoogle Scholar
  28. Saska MM, Kuzovkina YA (2010) Phenological stages of willow (Salix). Ann Appl Biol 156:431–437CrossRefGoogle Scholar
  29. Schirone B, Leone A, Mazzoleni S, Spada F (1990) A new method of survey and data analysis in phenology. J Veg Sci 2:27–34CrossRefGoogle Scholar
  30. Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87CrossRefGoogle Scholar
  31. Spieksma FTM, Emberlin JC, Hjelmroos M, Jager S, Leuschner RM (1995) Atmospheric birch (Betula) pollen in Europe - Trends and fluctuations in annual quantities and the starting dates of the seasons. Grana 34:51–57CrossRefGoogle Scholar
  32. Spieksma FTM, Corden JM, Detandt M, Millington WM, Nikkels H, Nolard N, Schoenmakers CHH, Wachter R, de Weger LA, Willems R, Emberlin J (2003) Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in Western Europe. Aerobiologia 19:171–184CrossRefGoogle Scholar
  33. Vitasse Y, Delzon S, Dufrêne E, Pontailler JY, Louvet JM, Kremer A, Michalet R (2009) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agric For Meteorol 149:735–744CrossRefGoogle Scholar
  34. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  35. Yuan W, Zhou G, Wang Y, Han X, Wang Y (2007) Simulating phenological characteristics of two dominant grass species in a semi-arid steppe ecosystem. Ecol Res 22:784–791CrossRefGoogle Scholar

Copyright information

© ISB 2011

Authors and Affiliations

  • Christine Cornelius
    • 1
  • Hannes Petermeier
    • 2
  • Nicole Estrella
    • 1
  • Annette Menzel
    • 1
  1. 1.Chair of EcoclimatologyTechnische Universität MünchenFreisingGermany
  2. 2.Fachgebiet BiostatistikTechnische Universität MünchenFreisingGermany

Personalised recommendations