Advertisement

International Journal of Biometeorology

, Volume 56, Issue 1, pp 165–176 | Cite as

The perceived temperature – a versatile index for the assessment of the human thermal environment. Part A: scientific basics

  • Henning Staiger
  • Gudrun Laschewski
  • Angelika Grätz
Original Paper

Abstract

The Perceived Temperature (PT) is an equivalent temperature based on a complete heat budget model of the human body. It has proved its suitability for numerous applications across a wide variety of scales from micro to global and is successfully used both in daily forecasts and climatological studies. PT is designed for staying outdoors and is defined as the air temperature of a reference environment in which the thermal perception would be the same as in the actual environment. The calculation is performed for a reference subject with an internal heat production of 135 W m−2 (who is walking at 4 km h−1 on flat ground). In the reference environment, the mean radiant temperature equals the air temperature and wind velocity is reduced to a slight draught. The water vapour pressure remains unchanged. Under warm/humid conditions, however, it is implicitly related to a relative humidity of 50%. Clothing is adapted in order to achieve thermal comfort. If this is impossible, cold or heat stress will occur, respectively. The assessment of thermal perception by means of PT is based on Fanger’s Predicted Mean Vote (PMV) together with additional model extensions taking account of stronger deviations from thermal neutrality. This is performed using a parameterisation based on a two-node model. In the cold, it allows the mean skin temperature to drop below the comfort value. In the heat, it assesses additionally the enthalpy of sweat-moistened skin and of wet clothes. PT has the advantages of being self-explanatory due to its deviation from air temperature and being—via PMV—directly linked to a thermo-physiologically-based scale of thermal perception that is widely used and has stood the test of time. This paper explains in detail the basic equations of the human heat budget and the coefficients of the parameterisations.

Keywords

Equivalent temperature Thermal assessment Heat budget model Thermal perception 

Notes

Acknowledgement

The described parameterisations are based on the two-node model in the version of T. Kinouchi und M. Kanda, Tokyo Institute of Technology from 1998 provided by Prof. Dr A. Matzarakis, Albert-Ludwigs University Freiburg, Germany and in the version of ASHRAE (2001) provided by Prof. Dr R. de Dear, Macquarie University, Sydney, Australia. Thanks go to Dr. M. Nikolopoulou, Bath University, United Kingdom, who grants access to the RUROS database in the framework of the EU-COST-Action 730 on Universal Thermal Climate Index.

References

  1. ASHRAE (2001) ASHRAE Handbook: Fundamentals, 8. American Society of Heating and Air-Conditioning Engineers, Atlanta, GAGoogle Scholar
  2. Blazejczyk K (1994) New climatological-and-physiological model of the human heat balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. Zeszyty IgiPZ PAN 28:27–58Google Scholar
  3. Bruse M (1999) Modelling and strategies for improved urban climates. In: Proceedings of the 15th International Congress of Biometeorology & International Conference on Urban Climatology. Wesley Conference Centre, Sydney, Australia, 8-12 November 1999Google Scholar
  4. Büttner K (1938) Physikalische Bioklimatologie. Akademische Verlagsges. LeipzigGoogle Scholar
  5. De Dear RJ, Leow KG, Ameen A (1991) Thermal comfort in the humid tropics – part I: climate chamber experiments on temperature preference in Singapore. ASHRAE Trans 97:874–879Google Scholar
  6. De Dear R, Brager GS (2001) The adaptive model of thermal comfort and energy conservation in the built environment. Int J Biometeorol 45:100–108CrossRefGoogle Scholar
  7. Dostal P, Katzschner A, Bruse M, Huttner B (2009) Quantifying the human thermal-heat-stress in Central European cities with BOTWorld and on site-interviews as analysing tool to estimate the thermal sensation of pedestrians. In: Proceedings of the 7th International Conference on Urban Climate, 29 June – 3 July 2009, Yokohama, Japan, P24-9, http://www.ide.titech.ac.jp/∼icuc7/extended_abstracts/index-web.html
  8. Fanger PO (1970) Thermal Comfort. Analysis and Applications in Environmental Engineering. Danish Technical Press, CopenhagenGoogle Scholar
  9. Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972Google Scholar
  10. Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159CrossRefGoogle Scholar
  11. Fiala D, Lomas KJ, Stohrer M (2003) First Principles Modeling of Thermal Sensation Responses in Steady-State and Transient Conditions. ASHRAE Trans 109 (Part 1):179–186Google Scholar
  12. Fobelets APR, Gagge AP (1988) Rationalization of the Effective Temperature ET*, as a Measure of the Enthalpy of the Human Indoor Environment. ASHRAE Trans 94/1:12–31Google Scholar
  13. Gagge AP, Stolwijk JAJ, Nishi Y (1971) An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatory Response. ASHRAE Trans 77/1:247–262Google Scholar
  14. Gagge AP, Fobelets AP, Berglund PE (1986) A Standard Predictive Index of Human Response to the Thermal Environment. ASHRAE Trans 92:709–731Google Scholar
  15. Höppe P (1984) Die Energiebilanz des Menschen. Universität München - Meteorologisches Institut, Wissenschaftliche Mitteilungen Nr, 49Google Scholar
  16. Höppe P, Mayer H (1987) Planungsrelevante Bewertung der thermischen Komponente des Stadtklimas. Landschaft + Stadt 19: 22-30Google Scholar
  17. Höppe P (1999) The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75CrossRefGoogle Scholar
  18. Höppe P (2001) Different aspects of assessing indoor and outdoor thermal comfort. In: Proceedings of the Conference “Moving Thermal Comfort Standards into the 21st Century. Cumberland Lodge, Windsor, UK, 5th – 8th April 2001”, pp. 368-375Google Scholar
  19. Horikoshi T, Tsuchikawa T, Kurazumi Y, Masubara N (1995) Mathematical Expression of Combined and Separate Effect of Air Temperature, Humidity, Air Velocity and Thermal Radiation on Thermal Comfort. Archiv Complex Environ Stud 7:9–12Google Scholar
  20. Huttner S, Bruse M, Dostal P, Kratzschner A (2009) Strategies for mitigating thermal heat stress in Central European cities: The project KLIMES. In: Proceedings of the 7th International Conference on Urban Climate, 29 June - 3 July 2009, Yokohama, Japan, P3-7, http://www.ide.titech.ac.jp/∼icuc7/extended_abstracts/index-web.html
  21. Huttner S, Bruse M (2009) Numerical modelling of the urban climate – a preview on ENVI-MET 4.0. In: Proceedings of the 7th International Conference on Urban Climate, 29 June - 3 July 2009, Yokohama, Japan, P3-7, http://www.ide.titech.ac.jp/∼icuc7/extended_abstracts/index-web.html
  22. Huizenga C, Hui Z, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36:691–699CrossRefGoogle Scholar
  23. Hwang R-L, Lin T-P (2007) Thermal comfort requirements for occupants of semi-outdoor and outdoor environments in hot-humid regions. Architect Sci Rev 50:357–364CrossRefGoogle Scholar
  24. ISO (1989) Hot environments - Estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature). International Standard ISO 7243: 1989 (E), International Organization for Standardization, GenevaGoogle Scholar
  25. ISO (1989) Hot environments – Analytical determination and interpretation of thermal stress using calculation of required sweat rate. International Standard ISO 7933, first edition, International Organization for Standardization, GenevaGoogle Scholar
  26. ISO (1993) Evaluation of cold environments - Determination of required clothing insulation (IREQ). Technical Report ISO TR 11079:1993 (E), first edition. International Organization for Standardization, GenevaGoogle Scholar
  27. ISO (1994) Moderate thermal environments - determination of the PMV and PPD indices and specification of the conditions for thermal comfort. International Standard ISO 7730. International Organization of Standardization, GenevaGoogle Scholar
  28. ISO (2002) Ergonomics - Evaluation of thermal strain by physiological measurements. International Standard ISO 9886, Revision by ISO/TC 159/Sc5 (draft). International Organization of Standardization, GenevaGoogle Scholar
  29. Jendritzky G, Sönning W, Swantes HJ (1979) Ein objektives Bewertungsverfahren zur Beschreibung des thermischen Milieus in der Stadt- und Landesplanung ("Klima-Michel-Modell"). ARL Beiträge Band 28, H. Schröder Verlag KG, HannoverGoogle Scholar
  30. Jendritzky G, Menz G, Schirmer H, Schmidt-Kessen W (1990) Methodik zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell). Beiträge d. Akad. f. Raumforschung und Landesplanung Bd. 114, HannoverGoogle Scholar
  31. Jendritzky G, Staiger H, Bucher K, Graetz A, Laschewski G (2000) The Perceived Temperature. The Method of the Deutscher Wetterdienst for the Assessment of Cold Stress and Heat Load for the Human Body. Internet Workshop on Windchill, 03. - 07. April 2000, hosted by the Meteorological Service of CanadaGoogle Scholar
  32. Jendritzky G, Bröde P, Fiala D, Havenith G, Weihs P, Batcharova E, DeDear R (2010) The Universal Thermal Climate Index UTCI. In: Matzarakis A, Mayer H, Chmielewski F-M (Ed.) Proceedings of the 7th Conference on Biometeorology, Freiburg, Germany, April 12-14th, 2010. Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg Nr. 20, pp. 184-188Google Scholar
  33. Knez I, Thorsson S (2006) Influence of culture and environmental attitude on thermal, emotional and perceptual evaluations of a public square. Int J Biometeorol 50:258–268CrossRefGoogle Scholar
  34. Landsberg HE (1972) The Assessment of Human Bioclimate, a Limited Review of Physical Parameters. World Meteorological Organization, Technical Note No. 123, WMO-No. 331, GenevaGoogle Scholar
  35. Lin T-P, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290CrossRefGoogle Scholar
  36. Lotens WA, Heus R, van de Linde FJG (1989) A 2-node thermoregulatory model for the foot. Proc. of the Int. Symp. on Thermal Physiology, pp. 769-775Google Scholar
  37. Matzarakis A, Mayer H (1996) An other kind of environmental stress: thermal stress. WHO News 18:7–10Google Scholar
  38. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84CrossRefGoogle Scholar
  39. Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334CrossRefGoogle Scholar
  40. Matzarakis A, Rutz F, Mayer H (2009) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol. doi: 10.1007/s00484-009-0261-0 Google Scholar
  41. Morgan C, de Dear R (2003) Weather, clothing and thermal adaptation to indoor climate. Clim Res 24:267–284CrossRefGoogle Scholar
  42. Nikolopoulou M, Baker N, Steemers K (2001) Thermal comfort in outdoor urban spaces: Understanding the human parameter. Sol Energy 70:227–235CrossRefGoogle Scholar
  43. Nikopoulou M, Lykoudis S (2006) Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build Environ 41:1455–1470CrossRefGoogle Scholar
  44. Nikolopoulou M, Lykoudis S (2007) Use of outdoor spaces and microclimate in a Mediterranean urban area. Build Environ 42:3691–3707CrossRefGoogle Scholar
  45. OFCM (2003) Report on Wind Chill Temperature and Extreme Heat Indices: Evaluation and Improvement Projects. US Department of Commerce, Federal Coordinator for Meteorological Services and Supporting Research, FCM-R19-2003, pp. 75 (http://www.ofcm.gov/jagti/r19-ti-plan/r19-ti-plan.htm)
  46. Osczevski RJ (1995) The Basis of Windchill. Arctic 48:372–382Google Scholar
  47. Pickup J, de Dear RJ (1999) An Outdoor Thermal Comfort Index (Out-Set*) - Part I - the Model and its Assumptions. In: de Dear RJ, Potter JC (eds) Proceedings of the 15th International Congress of Biometeorology & International Conference on Urban Climatology. Wesley Conference Centre, Sydney 08. - 12. Nov. 1999. Published by Macquarie University, Sydney, Australia, NovGoogle Scholar
  48. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996) Numerical Recipes. Vol. 1, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  49. RUROS (2005) Designing Open Spaces in the Urban Environment: a Bioclimatic Approach. http://www.eukn.org/binaries/eukn/dg-research/research/2005/10/ruros_guidelines_en.pdf
  50. Sievers U, Zdunkowski WG (1986) A Microscale Urban Climate Model. Beitr Phys Atm 59:13–40Google Scholar
  51. Spagnolo J, de Dear R (2003) A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney, Australia. Build Environ 38:721–738CrossRefGoogle Scholar
  52. Steadman RG (1984) A universal scale of apparent temperature. J Clim Appl Meteorol 23:1674–1687CrossRefGoogle Scholar
  53. Steadman RG (1994) Norms of apparent temperature in Australia. Aust Meteorol Mag 43:1–16Google Scholar
  54. Tanabe SI, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34:637–646CrossRefGoogle Scholar
  55. Tseliou A, Tsiros IX, Lykoudis S, Nikolopoulou M (2010) An evaluation of three biometeorological indices for human thermal comfort in urban outdoor areas under real climatic conditions. Build Environ 45:1346–1352CrossRefGoogle Scholar
  56. VDI (2008): Richtlinie VDI 3787, Part 2 Environmental Meteorology. Methods for the human biometeorological evaluation of climate and air quality for urban and regional planning at regional level. Part I: Climate. VDI-Handbuch Reinhaltung der Luft, Band 1 bGoogle Scholar

Copyright information

© ISB 2011

Authors and Affiliations

  • Henning Staiger
    • 1
  • Gudrun Laschewski
    • 2
  • Angelika Grätz
    • 2
  1. 1.Deutscher Wetterdienst (emeritus)ElzachGermany
  2. 2.Deutscher WetterdienstFreiburgGermany

Personalised recommendations