International Journal of Biometeorology

, Volume 55, Issue 2, pp 173–186 | Cite as

Climate and tourism in the Black Forest during the warm season

Original Paper

Abstract

Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany – the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971–2000, particularly for the warm period of the year, defined here as the months of March–November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative trend, which is in line with the trend of a decrease in physiologically equivalent temperature as well as in thermal comfort conditions. Due to the rising air temperature, heat stress as well as sultry conditions are projected to become more frequent, affecting human health and recreation, especially at lower lying altitudes. The tops of the mountains and higher elevated areas still have the advantage of offering comfortable climatic conditions.

Keywords

Climate change Tourism potential Regional climate modeling REMO Warm period Mountains Black Forest Southwest Germany 

References

  1. Amelung B, Viner D (2006) Mediterranean tourism: exploring the future with the Tourism Climate Index. J Sustain Tour 14:349–366CrossRefGoogle Scholar
  2. Aoki Y, Aikoh T (2008) Research report. Comparison of outdoor activities between Austria and Japan, research name: bilateral joint project in 2005 and 2006 by JSPS. J Environ Inf Sci 36(5):109–118Google Scholar
  3. Auer I, Böhm R, Mohnl H (1989) Klima von Wien – Eine anwendungsorientierte Klimatographie. Magistrat der Stadt Wien, Geschäftsgruppe Stadtentwicklung, Stadtplanung und Personal, Geschäftsgruppe Umwelt, Freizeit und Sport. Beitr Stadtforsch Stadentwickl Stadtgestalt Band 20Google Scholar
  4. Beniston M (2004) The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett 31:L02202. doi:10.1029/2003GL018857 CrossRefGoogle Scholar
  5. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate modeling projection. Clim Change 81:71–95CrossRefGoogle Scholar
  6. Besancenot JP (1990) Climat et tourisme. Collection géographie. Masson, ParisGoogle Scholar
  7. Butler RW (1994) Seasonality in tourism: issues and problems. In: Seaton AV (ed) Tourism: the state of the art. Wiley, Chichester, pp 332–339Google Scholar
  8. Büttner K (1938) Physikalische Bioklimatologie. Akad Verlagsgesell LeipzigGoogle Scholar
  9. Castens G (1925) Über Tropenklimatologie, Tropenhygiene und den Lettow-Feldzug. Ann Hydrogr Marit Meteorol 5:177–187Google Scholar
  10. Dammann W (1962) Die Schwüle als Klimafaktor. Jahrbuch Tech. Hochschule Hannover 1960/1962:214–222Google Scholar
  11. De Freitas CR (2003) Tourism climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int J Biometeorol 48:45–54CrossRefGoogle Scholar
  12. DZT (2007) Jahresbericht 2007 der Deutschen Zentrale für Tourismus e.V. 1–8Google Scholar
  13. Endler C, Matzarakis A (2008) Climatic tourism potential in the North Sea and Black Forest region – a comparison between REMO and DWD data. In: Mayer H (ed) Celebrating the 50 Years of the Meteorological Institute, Albert-Ludwigs-University of Freiburg, Germany, vol 17. Ber Meteorol Inst Univ Freiburg Nr. pp 179–189Google Scholar
  14. Gagge AP, Fobelets AP, Berglund PE (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731Google Scholar
  15. Harlfinger O (1985) Bioklimatischer Ratgeber für Urlaub und Erholung. Fischer, StuttgartGoogle Scholar
  16. Havlik D (1976) Untersuchungen zur Schwüle im kontinentalen Tiefland der Vereinigten Staaten von Amerika. Freiburg Geogr Hefte 15Google Scholar
  17. Hentschel G (1978) Das Bioklima des Menschen. VEB Verlag Volk und Gesundheit, BerlinGoogle Scholar
  18. Herrmann H (1959) Die Schwüle, eine vergleichende Untersuchung. Dissertation, Meteorological Institute, University of CologneGoogle Scholar
  19. Höppe P (1999) The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75CrossRefGoogle Scholar
  20. IPCC (2001) In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  21. IPCC (2007) In: Solomon S, Qin D et al (eds) Climate change 2007: the scientific basis. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  22. Jacob D, Andrae U, Elgered G, Fortelius C, Graham LP, Jackson SD, Karstens U, Koepken C, Lindau R, Podzun R, Rockel B, Rubel F, Sass HB, Smith RND, Van den Hurk BJJM, Yang X (2001) A comprehensive model intercomparison study investigating the water budget during the BALTEX-PIDCAP Period. Meteorol Atmos Phys 77:19–43CrossRefGoogle Scholar
  23. Jacob D, Bäring L, Christensen OB, Christensen JH, De Castro M, Deque M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sanchez E, Schär C, Seneviratne S, Somot S, Van Ulden A, Van Den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52CrossRefGoogle Scholar
  24. Jacob D, Göttel H, Kotlarski S, Lorenz P, Sieck K (2008) Klimaauswirkungen und Anpassung in Deutschland. Phase 1: Erstellung regionaler Klimaszenarien für Deutschland. Umweltbundesamt, Dessau-RoßlauGoogle Scholar
  25. Jendritzky G, Sönnig W, Swantes H-J (1979) Ein objektives Bewertungsverfahren zur Beschreibung des thermischen Milieus in der Stadt-und Landschaftsplanung (“Klima-Michel-Modell”). In: Akademie für Raumforschung und Landesplanung, 28, HannoverGoogle Scholar
  26. Jonas M, Staeger T, Schönwiese C (2005) Berechnung der Wahrscheinlichkeiten für das Eintreten von Extremen durch Klimaänderungen – Schwerpunkt Deutschland. UmweltbundesamtGoogle Scholar
  27. King E (1955) Ein empirisches Schwülemaß. Med Meteorol Hefte 10:5–8Google Scholar
  28. KLIWA (2006) Regionale Klimaszenarien für Süddeutschland – Abschätzung der Auswirkung auf den Wasserhaushalt. KLIWA-Berichte, Heft 9Google Scholar
  29. Koppe C, Kovats S, Jendritzky G, Menne B (2004) Heatwaves: risks and responses. World Health Organization. Health and global environmental change, series, no. 2, Copenhagen, DenmarkGoogle Scholar
  30. Lancaster A (1898) De la manière d’utiliser les observations hygrométriques. V Congr Int d’Hydrologie, Climatologie. Liège, pp 261–271Google Scholar
  31. Leistner W (1951) Die hygienische und klimatische Bedeutung des Dampfdrucks in Innenräumen und die Behaglichkeits-und Schwülegrenze. Med Meteorol Hefte 6:18–31Google Scholar
  32. Linke F (1926) Handbuch der normalen und pathologischen Physiologie, Bd. 17:286f, BerlinGoogle Scholar
  33. Mansfeld Y (1992) From motivation to actual travel. A. Tour Res 19(2):399–419CrossRefGoogle Scholar
  34. Matzarakis A (2006) Weather and climate related information for tourism. Tour Hosp Res 3:99–115Google Scholar
  35. Matzarakis A (2007) Entwicklung einer Bewertungsmethodik zur Integration von Wetter-und Klimabedingungen im Tourismus. Ber Meteorol Inst Univ Freiburg 16:73–79Google Scholar
  36. Matzarakis A, Endler C (2010) Climate change and thermal bioclimate in cities: impacts and options for adaptation in Freiburg, Germany. Int J Biometeorol doi:10.1007/s00484-009-0296-2
  37. Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO Newsl 18:7–10Google Scholar
  38. Matzarakis A, Rutz F, Mayer H (2007a) Modelling radiation fluxes in simple and complex environment-application of the RayMan model. Int J Biometeorol 51:323–334CrossRefGoogle Scholar
  39. Matzarakis A, Matuschek O, Neumcke R, Rutz F, Zalloom M (2007b) Climate change scenarios and tourism – how to handle and operate with data. In: Matzarakis A, de Freitas CR, Scott D (eds) 2007: developments in tourism climatology. Commission on Climate, Tourism and Recreation. International Society of Biometeorology, pp 240–245Google Scholar
  40. Missenard H (1948) Équivalences thermiques des ambiences; équivalences de passage; équivalences de séjour. Chal Ind 24:159–183Google Scholar
  41. More G (1988) Impact of climate change and variability on recreation in the Prairie Provinces in Magill. In: Magill BL, Geddes F (eds) The impact of climate variability and change on the Canadian Prairies. Proceedings of the Symposium/Workshop, Edmonton, Alberta, 9–11 September 1987Google Scholar
  42. PRUDENCE (2007) Prediction of regional scenarios and uncertainties for defining European climate change risks and effects: the PRUDENCE Project. Clim Change 81(Supplement 1):1–371Google Scholar
  43. Rudloff W, Jungmann H (1968) Wärmebelastung des Tropenreisenden. Die Umschau 1968:524–529Google Scholar
  44. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Lininger M, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:75–79CrossRefGoogle Scholar
  45. Scharlau K (1943) Die Schwüle als messbare Größe. Bioklimat Beibl 10:19–23Google Scholar
  46. Staiger H, Bucher K, Jendritzky G (1997) Gefühlte Temperatur. Die physiologisch gerechte Bewertung von Wärmebelastung und Kältestress beim Aufenthalt im Freien in der Maßzahl Grad Celsius. Ann Meteorol 33:100–107Google Scholar
  47. Stick C, Schade N (2008) Beeinflusst die globale Erwärmung physiologisch relevante Klimafaktoren an der deutschen Nordseeeküste? Phys Med Rehab Kuror 18:207–212CrossRefGoogle Scholar
  48. Stock M (2005) KLARA – Klimawandel, Auswirkungen, Risiken und Anpassung. PIK Report 99Google Scholar
  49. TA Lärm (1998) Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm) vom 26. August 1998Google Scholar
  50. TA Luft (2002) Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutz-gesetz (Technische Anleitung zur Reinhaltung der Luft) vom 24. Juli 2002Google Scholar
  51. VDI (1998) VDI 3787 Blatt 2, Methoden zur human-biometeorologischen Bewertung von Klima und Lufthygiene für die Stadt-und Regionalplanung. Teil I: Klima. Beuth Verlag, BerlinGoogle Scholar
  52. Zaninovic K, Matzarakis A, Cegnar T (2006) Thermal comfort trends and variability in the Croatian and Slovenian mountains. Meteorol Z 15:243–251CrossRefGoogle Scholar

Copyright information

© ISB 2010

Authors and Affiliations

  1. 1.Meteorological InstituteAlbert-Ludwigs-University of FreiburgFreiburgGermany

Personalised recommendations