Advertisement

International Journal of Biometeorology

, Volume 55, Issue 1, pp 17–34 | Cite as

Synoptic and meteorological characterisation of olive pollen transport in Córdoba province (south-western Spain)

  • Miguel A. Hernández-Ceballos
  • Hermínia García-Mozo
  • José Antonio Adame
  • Eugenio Domínguez-Vilches
  • Benito A. De la Morena
  • Juan Pedro Bolívar
  • Carmen Galán
Original Paper

Abstract

The main goal of the present study was to provide a detailed analysis of olive pollen transport dynamics in the province of Córdoba (south-western Spain) by applying back-trajectory analysis. Pollen data from 2006 and 2007 were analysed at four monitoring sites: Córdoba city in the centre of the province, Baena and Priego de Córdoba located in the south, and El Cabril reserve (Hornachuelos Natural Park) in the north. Particular attention was paid to nine episodes of high pollen counts. Synoptic surface maps were used, and kinematic back-trajectories (3D) were computed using the hybrid single particle Lagrangian integrated trajectory model (HYSPLIT) at 500 m above ground level, run with a time-step of 6 h over a period of 36 h. Findings were analysed in conjunction with daily and bi-hourly airborne pollen data, field phenological data and hourly surface meteorological data recorded at nearby stations: temperature, relative humidity, rainfall, wind direction and wind speed. The results identified two pollen source areas over the Córdoba province, the largest one located in the south, affecting Baena, Priego de Córdoba and Córdoba city, and one smaller located in the west, which determines mainly the pollen cycle over the north of the province, El Cabril. In addition, two air mass circulations were found, one coming from the south and crossing the main olive pollen sources very close to the surface and being frequently associated with higher pollen counts, and the other coming from the west and, in the episodes investigated, influencing mainly the north of the province.

Keywords

Aerobiology Olive pollen Back-trajectory Synoptic conditions Meteorological conditions 

Notes

Acknowledgements

The authors are grateful to the European Social Fund for co-financing with the Spanish Science Ministry. Dr. García Mozo was supported by a “Ramón y Cajal” contract, and the Andalusia Regional Government funded the project entitled “Modelización y analisis de la influencia de la variación genética en la fenología reproductiva de especies vegetales” (PO6-RNM-02195). The authors also thank the Spanish Meteorological Agency (AEMET) and the Andalusian Government Agroclimatic Information Network (RIA) for providing weather data.

References

  1. Bullock JM, Clarke RT (2000) Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124:506–521CrossRefGoogle Scholar
  2. Díaz de la Guardia C, Galán C, Domínguez E, Alba F, Ruiz L, Sabariego S, Recio M, Fernández-González D, Méndez J, Vendrell M, Gutiérrez M (1999) Variations in the main pollen season of Olea europaea L. at selected sites in the Iberian Peninsula. Polen 10:103–113Google Scholar
  3. Domínguez E, Infante F, Galán C, Guerra F, Villamandos F (1993) Variation in the concentrations of airborne Olea pollen and associated pollinosis in Córdoba (Spain); a study of the ten years period 1982–1991. J Investig Allergol Clin Immunol 3(3):121–129Google Scholar
  4. Draxler RR, Hess GD (1998) An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust Meteor Mag 47:295–308Google Scholar
  5. Draxler RR, Stunder B, Rolph G, Taylor A (2005) Hysplit_4 User’s Guide. NOAA Air Resources LaboratoryGoogle Scholar
  6. Fornaciari M, Pieroni L, Giuchi P, Romano B (1998) A regresión model for the start of the pollen season in Olea Europaea L. Grana 37:110–113CrossRefGoogle Scholar
  7. Fornaciari M, Galán C, Mediavilla A, Domínguez E, Romano B (2000) Aeropalynological and phenological study in two different Mediterrranean olive areas: Córdoba (Spain) and Perugia (Italy). Plant Biosyst 134(2):199–204CrossRefGoogle Scholar
  8. Fornaciari M, Pieroni L, Orlandi F, Romano B (2002) A new approach to consider the pollen variable in forecasting yield models. Econ Bot 56(1):66–72CrossRefGoogle Scholar
  9. Galán C, Tormo R, Cuevas J, Infante F, Domínguez E (1991) Theoretical daily variation patterns of airbone pollen in the southwest of Spain. Grana 30:201–209CrossRefGoogle Scholar
  10. Galán C, Vázquez L, García-Mozo H, Domínguez E (2004) Forecasting olive (Olea europaea L.) crop yield based on pollen emission. Field Crops Res 86:43–51CrossRefGoogle Scholar
  11. Galán C, Cariñanos P, Alcázar P, Dominguez E (2007) Management and Quality Manual. Spanish Aerobiology Network (REA). Servicio Publicaciones Universidad de Córdoba, Córdoba, Spain. ISBN 978-84-690-6353-8Google Scholar
  12. Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz de la Guardia C, Domínguez E (2008) Modelling olive (Olea europaea L.) crop yield in Andalusia Region, Spain. Agron J 100(1):98–104CrossRefGoogle Scholar
  13. Hirst J (1952) An automatic volumetric spore-trap. Ann Appl Biol 36:257–265CrossRefGoogle Scholar
  14. Kalkstein LS, Sheridan SC, Graybeal DY (1998) A determination of character and frequency changes in air masses using a spatial synoptic classification. Int J Climatol 18:1223–1236CrossRefGoogle Scholar
  15. Kasprzyk I (2008) Non-native Ambrosia pollen in the atmosphere of Rzeszów (SE Poland); evaluation of the effect of weather conditions on daily concentrations and starting dates of the pollen season. Int J Biometeorol 52:341–351CrossRefGoogle Scholar
  16. Latatowa M, Miętus M, Uruska A (2002) Seasonal variations in the atmospheric Betuna pollen count in Gdansk (southern Baltic coast) in relation to meteorological parameters. Aerobiologia 18:33–43CrossRefGoogle Scholar
  17. Maillard R (1975) L’olivier. INVUFLEC. Paris, FranceGoogle Scholar
  18. Ribeiro H, Cunha M, Abreu I (2007) Improving early-season estimates of olive production using airborne pollen multi-sampling sites. Aerobiologia 23(1):71–78CrossRefGoogle Scholar
  19. SkjØth C, Sommer J, Brandt J, Hvidberg M, Geels C, Hansen K, Hertel O, Fronhn L, Christensen J (2008) Copenhagen—a significant source of birch (Betula) pollen? Int J Biometeorol 52(6):453–462CrossRefGoogle Scholar
  20. Smith M, Emberlin J, Kress A (2005) Examining high magnitude grass pollen episodes at Worcester, United Kingdom, using back-trajectory analysis. Aerobiología 21:85–94CrossRefGoogle Scholar
  21. Smith M, SkjØth CA, Myszkowska D, Uruska A, Malgozata P, Stach A, Balwierzg Z, Chlopekk P, Piotrowska K, Kasprzyk I, Brandt J (2008) Long-range transport of Ambrosia pollen to Poland. Agric For Meteorol 148:1402–1411CrossRefGoogle Scholar
  22. Stach A, Smith M, SkjØth C, Brandt J (2007) Examining Ambrosia pollen episodes at Poznan (Poland) using back-trajectory analysis. Int J Biometeorol 51:275–286CrossRefGoogle Scholar
  23. Stohl A (1998) Computation, accuracy and applications of trajectories—a review and bibliography. Atmos Environ 32:947–966CrossRefGoogle Scholar
  24. Vázquez LM, Galán C, Domínguez-Vilches E (2003) Influence of meteorological parameters on olea pollen concentration in Córdoba (South-western Spain). Int J Biometeorol 48:83–90CrossRefGoogle Scholar

Copyright information

© ISB 2010

Authors and Affiliations

  • Miguel A. Hernández-Ceballos
    • 1
    • 3
  • Hermínia García-Mozo
    • 2
  • José Antonio Adame
    • 1
  • Eugenio Domínguez-Vilches
    • 2
  • Benito A. De la Morena
    • 1
  • Juan Pedro Bolívar
    • 3
  • Carmen Galán
    • 2
  1. 1.Atmospheric Sounding Station “El Arenosillo”, Atmospheric Research and Instrumentation BranchNational Institute of Aerospace Technology (INTA)Mazagón-HuelvaSpain
  2. 2.Departamento de Botánica, Ecología y Fisiología VegetalUniversidad de CórdobaCórdobaSpain
  3. 3.Department of Applied PhysicsUniversity of HuelvaHuelvaSpain

Personalised recommendations