International Journal of Biometeorology

, Volume 54, Issue 5, pp 563–581 | Cite as

Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models

  • François LebourgeoisEmail author
  • Jean-Claude Pierrat
  • Vincent Perez
  • Christian Piedallu
  • Sébastien Cecchini
  • Erwin Ulrich
Original Paper


After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997–2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041–2070 and 2071–2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March–April and October–November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.


Phenology Leaf unfolding Leaf coloring Spatial variation Climate change Global circulation model 



We sincerely thank the foresters of the RENECOFOR network who collected the phenological data used in this study. We also thank Météo France for their technical assistance for the selection of the meteorological stations. We thank Jean-Daniel Bontemps from LERFOB and Michèle Kaennel Dobbertin from the Swiss Federal Institute for Forest, Snow and Landscape Research WSL for helpful comments and English corrections of the manuscript.

Supplementary material

484_2010_305_MOESM1_ESM.doc (26 kb)
Appendix S1 Mean characteristics of the 103 stands sampled in the French Permanent Plot Network (Renecofor). Age in years in 1994 ; Dbh diameter at 1.3 m. The values in square brackets indicate the range of the variations for each parameter. Average latitude and longitude (DOC 26 kb)


  1. Berthelot M, Friedlingstein P, Ciais P, Dufresne JL, Monfray P (2005) How uncertainties in future climate change predictions translate into future terrestrial carbon fluxes. Glob Chang Biol 11:959–970CrossRefGoogle Scholar
  2. Botta A, Viovy N, Ciais P, Friedlingstein P, Monfray P (2000) A global prognostic scheme of leaf onset using satellite data. Glob Chang Biol 6:709–725CrossRefGoogle Scholar
  3. Breiman L (2001) RandomForests. Mach Learn 45:5–32CrossRefGoogle Scholar
  4. Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112CrossRefGoogle Scholar
  5. Chuine I (2000) A unified model for budburst of trees. J Theor Biol 207:337–347CrossRefPubMedGoogle Scholar
  6. Churkina G, Schimel D, Braswell BH, Xiao X (2005) Spatial analysis of growing season length control over net ecosystem exchange. Glob Chang Biol 11:1777–1787CrossRefGoogle Scholar
  7. Davi H, Dufrêne E, François C, Le Maire G, Loustau D, Bosc A, Rambal S, Granier A, Moors E (2006) Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems. Agric For Meteorol 141:35–56CrossRefGoogle Scholar
  8. Delpierre N, Dufrene E, Soudani K, Ulrich E, Cecchini S, Boe J, Francois C (2009a) Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric For Meteorol 149:938–948CrossRefGoogle Scholar
  9. Delpierre N, Soudani K, Francois C, Kostner B, Pontailler JY, Nikinmaa E, Misson L, Aubinet M, Bernhofer C, Granier A, Grunwald T, Heinesch B, Longdoz B, Ourcival JM, Rambal S, Vesala T, Dufrene E (2009b) Exceptional carbon uptake in European forests during the warm spring of 2007: a data-model analysis. Glob Chang Biol 15:1455–1474CrossRefGoogle Scholar
  10. Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Change 57:16–26CrossRefGoogle Scholar
  11. Dittmar C, Elling W (2006) Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in Southern Germany. Eur J For Res 125:181–188Google Scholar
  12. Duursma RA, Kolari P, Peramaki M, Pulkkinen M, Makela A, Nikinmaa E, Hari P, Aurela M, Berbigier P, Bernhofer C, Grunwald T, Loustau D, Molder M, Verbeeck H, Vesala T (2009) Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: a model-based analysis. Tree Physiol 29:621–639CrossRefPubMedGoogle Scholar
  13. Estrella N, Menzel A (2006) Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Clim Res 32:253–267CrossRefGoogle Scholar
  14. Falusi M, Calamassi R (1997) Bud dormancy in Fagus sylvatica L. I. Chilling and photoperiod as factors determining budbreak. Plant Biosyst 131:67–72Google Scholar
  15. Heide OM (1993) Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol Plant 88:531–540CrossRefGoogle Scholar
  16. Jolly WM, Nemani R, Running SW (2005) A generalized, bioclimatic index to predict foliar phenology in response to climate. Glob Chang Biol 11:619–632CrossRefGoogle Scholar
  17. Keskitalo J, Bergquist G, Gardestrom P, Jansson S (2005) A cellular timetable of autumn senescence. Plant Physiol 139:1635–1648CrossRefPubMedGoogle Scholar
  18. Kramer K (1995) Phenotypic plasticity of the phenology of seven European tree species in relation to climatic warming. Plant Cell Environ 18:93–104CrossRefGoogle Scholar
  19. Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44:67–75CrossRefPubMedGoogle Scholar
  20. Lebourgeois F, Piedallu C (2005) Appréhender le niveau de sécheresse dans le cadre des études stationnelles et de la gestion forestière. Notions d'indices bioclimatiques. Rev For Fr 57:331–356Google Scholar
  21. Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 19:385–401CrossRefGoogle Scholar
  22. Lebourgeois F, Pierrat JC, Perez V, Piedallu C, Cecchini S, Ulrich E (2008) Déterminisme de la phénologie des forêts tempérées françaises: Etude sur les peuplements du RENECOFOR. Rev For Fr 60:323–343Google Scholar
  23. Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14CrossRefGoogle Scholar
  24. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:695CrossRefGoogle Scholar
  25. Menzel A, Estrella N, Testka A (2005) Temperature response rates from long-term phenological records. Clim Res 30:21–28CrossRefGoogle Scholar
  26. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Aha R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatcza K, Mage F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006a) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976CrossRefGoogle Scholar
  27. Menzel A, Sparks TH, Estrella N, Roy DB (2006b) Altered geographic and temporal variability in phenology in response to climate change. Glob Ecol Biogeogr 15:498–504Google Scholar
  28. Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe : the observed record (1901–2000) and 13 scenarios (2001–2100). Tyndall Centre Working Paper 55 1-25Google Scholar
  29. Murray MB, Cannell GR, Smith I (1989) Date of budburst of fifteen tree species in Britain following climatic warming. J Appl Ecol 26:693–700CrossRefGoogle Scholar
  30. Murray MB, Smith RI, Leith ID, Fowler D, Lee HSJ, Friend AD, Jarvis PG (1994) Effects of elevated CO2, nutrition and climatic warming on bud phenology in Sitka spruce (Picea sitchensis) and their impact on the risk of frost damage. Tree Physiol 14:691–706PubMedGoogle Scholar
  31. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25CrossRefGoogle Scholar
  32. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Chang Biol 13:1860–1872CrossRefGoogle Scholar
  33. Partanen J, Koksi V, Hänninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiol 18:811–816PubMedGoogle Scholar
  34. Penuelas J, Filella I, Zhang XY, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161:837–846CrossRefGoogle Scholar
  35. Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang JY, Barr A, Chen AP, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52CrossRefPubMedGoogle Scholar
  36. Piedallu C, Gégout JC (2007) Multiscale computation of solar radiation for predictive vegetation modelling. Ann For Sci 64:899–909CrossRefGoogle Scholar
  37. Planton S, Deque M, Chauvin F, Terray L (2008) Expected impacts of climate change on extreme climate events. C R Geosci 340:564–574CrossRefGoogle Scholar
  38. Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199CrossRefGoogle Scholar
  39. Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O'Keefe J (2009) Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol 29:321–331CrossRefPubMedGoogle Scholar
  40. Rötzer T, Chmielewski FM (2001) Phenological maps of Europe. Clim Res 18:248–257CrossRefGoogle Scholar
  41. Rötzer T, Grote R, Pretzsch H (2004) The timing of bud burst and its effect on tree growth. Int J Biometeorol 48:109–118CrossRefPubMedGoogle Scholar
  42. Saito M, Maksyutov S, Hirata R, Richardson AD (2009) An empirical model simulating diurnal and seasonal CO2 flux for diverse vegetation types and climate conditions. Biogeosciences 6:585–599CrossRefGoogle Scholar
  43. Sanz-Perez V, Castro-Diez P, Valladares F (2009) Differential and interactive effects of temperature and photoperiod on budburst and carbon reserves in two co-occurring Mediterranean oaks. Plant Biol 11:142–151CrossRefPubMedGoogle Scholar
  44. Schaber J, Badeck FW (2003) Physiology-based phenology models for forest tree species in Germany. Int J Biometeorol 47:193–201CrossRefPubMedGoogle Scholar
  45. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12:343–351CrossRefGoogle Scholar
  46. Soudani K, Le Maire G, Dufrêne E, François C, Delpierre N, Ulrich E, Cecchini S (2008) Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Remote Sens Environ 112:2643–2655CrossRefGoogle Scholar
  47. Thompson R, Clark RM (2008) Is spring starting earlier? Holocene 18:95–104CrossRefGoogle Scholar
  48. van Asch M, Tienderen PH, Holleman LJM, Visser ME (2007) Predicting adaptation of phenology in response to climate change, an insect herbivore example. Glob Chang Biol 13:1596–1604CrossRefGoogle Scholar
  49. Vayssières MP, Plant RE, Allen-Diaz BH (2000) Classification trees: an alternative non-parametric approach for predicting species distributions. J Veg Sci 11:679–694CrossRefGoogle Scholar
  50. Vitasse Y, Delzon S, Dufrêne E, Pontailler JY, Louvet JM, Kremer A, Michalet R (2009a) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses. Agric For Meteorol 149:735–744CrossRefGoogle Scholar
  51. Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009b) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198CrossRefPubMedGoogle Scholar
  52. Yuan FM, Arain MA, Barr AG, Black TA, Bourque CPA, Coursolle C, Margolis HA, McCaughey JH, Wofsy SC (2008) Modeling analysis of primary controls on net ecosystem productivity of seven boreal and temperate coniferous forests across a continental transect. Glob Chang Biol 14:1765–1784CrossRefGoogle Scholar

Copyright information

© ISB 2010

Authors and Affiliations

  • François Lebourgeois
    • 1
    Email author
  • Jean-Claude Pierrat
    • 1
  • Vincent Perez
    • 1
  • Christian Piedallu
    • 1
  • Sébastien Cecchini
    • 2
  • Erwin Ulrich
    • 2
  1. 1.Laboratoire d’Etude des Ressources Forêt Bois (LERFoB), AgroParisTechENGREFNancyFrance
  2. 2.Département des Recherches TechniquesOffice National des ForêtsFontainebleauFrance

Personalised recommendations