International Journal of Biometeorology

, Volume 54, Issue 4, pp 449–464 | Cite as

Simulating stand climate, phenology, and photosynthesis of a forest stand with a process-based growth model

  • Thomas Rötzer
  • Michael Leuchner
  • Angela J. Nunn
Original Paper

Abstract

In the face of climate change and accompanying risks, forest management in Europe is becoming increasingly important. Model simulations can help to understand the reactions and feedbacks of a changing environment on tree growth. In order to simulate forest growth based on future climate change scenarios, we tested the basic processes underlying the growth model BALANCE, simulating stand climate (air temperature, photosynthetically active radiation (PAR) and precipitation), tree phenology, and photosynthesis. A mixed stand of 53- to 60-year-old Norway spruce (Picea abies) and European beech (Fagus sylvatica) in Southern Germany was used as a reference. The results show that BALANCE is able to realistically simulate air temperature gradients in a forest stand using air temperature measurements above the canopy and PAR regimes at different heights for single trees inside the canopy. Interception as a central variable for water balance of a forest stand was also estimated. Tree phenology, i.e. bud burst and leaf coloring, could be reproduced convincingly. Simulated photosynthesis rates were in accordance with measured values for beech both in the sun and the shade crown. For spruce, however, some discrepancies in the rates were obvious, probably due to changed environmental conditions after bud break. Overall, BALANCE has shown to respond to scenario simulations of a changing environment (e.g., climate change, change of forest stand structure).

Keywords

Single tree growth model Climate change Stand climate Phenology Photosynthesis 

References

  1. Balster NJ, Marshall JD (2000) Decreased needle longevity of fertilized Douglas-fir and grand fir in the northern Rockies. Tree Physiol 20:1191–1197PubMedGoogle Scholar
  2. BayFORKLIM (1996) Klimaatlas Bayern. Fachbuchhandlung Kanzler, MünchenGoogle Scholar
  3. Bossel H (1996) TREEDYN3 forest simulation model. Ecol Model 90:187–227CrossRefGoogle Scholar
  4. Brügger R (1998) Die phänologische Entwicklung von Buche und Fichte. Beobachtung, Variabilität, Darstellung und deren Nachvollzug in einem Modell. Geographischen Instituts der Universität Bern, BernGoogle Scholar
  5. Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112CrossRefGoogle Scholar
  6. Courbaud B, de Coligny F, Cordonnier T (2003) Simulating radiation distribution in a heterogeneous Norway spruce forest on a slope. Agric For Meteorol 116:1–18CrossRefGoogle Scholar
  7. Davi H, Dufrene E, Granier A, Le Dantec V, Carbaroux C, Francois C, Breda N (2005) Modelling carbon and water cycles in a beech forest Part II.: validation of the main processes from organ to stand scale. Ecol Model 185:387–405CrossRefGoogle Scholar
  8. DVWK (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. DVWK-Merkblätter zur Wasserwirtschaft 238, Wirtschafts- und Verl.-Ges. Gas und Wasser, BonnGoogle Scholar
  9. DWD (1991) Anleitung für die phänologischen Beobachter des Deutschen Wetterdienstes. Eigenverlag DWD, Offenbach am MainGoogle Scholar
  10. Eschenbach C (2002) The effect of light acclimation of single leaves on whole tree growth and competition – an application of the tree growth model ALMIS. Ann For Sci 57:599–609CrossRefGoogle Scholar
  11. Fitter AH, Fitter RSR, Harris ITB, Williamson MH (1995) Relationships between first flowering date and temperature in the flora of a locality in central England. Funct Ecol 9:55–60CrossRefGoogle Scholar
  12. Götz B (1996) Ozon und Trockenstress Wirkungen auf den Gaswechsel von Fichte. IHW, EchingGoogle Scholar
  13. Grote R, Pretzsch H (2002) A model for individual tree development based on physiological processes. Plant Biol 4:167–180CrossRefGoogle Scholar
  14. Grote R, Patzner K, Seifert T (2003) Modelling water availability in individual trees - a contribution of process-based simulation to the prediction of developments in heterogenous stands. Umwelt Informatik Aktuell 31:804–812Google Scholar
  15. Gusev YM, Nasova ON (2003) The simulation of heat and water exchange in the boreal spruce forest by the land-surface model SWAP. J Hydrol 280:162–191CrossRefGoogle Scholar
  16. Haxeltine A, Prentice IC (1996) A general model for the light-use efficiency of primary production. Funct Ecol 10:551–561CrossRefGoogle Scholar
  17. IPCC (2007) IPCC WGI fourth assessment report to climate change: the physical science basis; summary for policymakers. IPCC Secretariat, Geneva, p 18Google Scholar
  18. Kikuzawa K (1995) The basis for variation in leaf longevity of plants. Vegetatio 121:89–100CrossRefGoogle Scholar
  19. Korol RL, Running SW, Milner KS (1995) Incorporating inter tree competition into an ecosystem model. Can J For Res 25:413–424CrossRefGoogle Scholar
  20. Lagergren F, Lindroth A (2002) Transpiration response to soil moisture in pine and spruce trees in Sweden. Agric For Meteorol 112:67–85CrossRefGoogle Scholar
  21. Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95:209–228CrossRefGoogle Scholar
  22. Landsberg JJ, Johnsen K, Albaugh T, Allen H, McKeand S (2001) Applying 3-PG, a simple process-based model designed to produce practical results to data from loblolly pine experiments. For Sci 47:43–51Google Scholar
  23. Landsberg JJ, Waring RH, Coops NC (2003) Performance of the forest productivity model 3-PG applied to a wide range of forest types. For Ecol Manag 172:199–214CrossRefGoogle Scholar
  24. Leuchner M, Fabian P, Werner H (2005) Spectral multichannel monitoring of radiation within a mature mixed forest. Plant Biol 7:619–627CrossRefPubMedGoogle Scholar
  25. Lo E, Wang ZM, Lechowicz M, Messier C, Nikinmaa E, Perttunen J, Sievänen R (2001) Adaptation of the LIGNUM model for simulation of growth and light response in Jack pine. For Ecol Manag 150:279–291CrossRefGoogle Scholar
  26. Mäkela A (1990) Modelling structural-functional relationships in whole-tree growth: resource allocation. In: Dixon RK, Meldahl RS, Ruark GA, Warren WG (eds) Process modelling of forest growth responses to environmental stress. Timber Press, Portland, pp 81–95Google Scholar
  27. Mariscal MJ, Martens SN, Ustin SL, Chen J, Weiss SB, Roberts DA (2004) Light-transmission profiles in an old-growth forest canopy: simulations of photosynthetically active radiation by using spatially explicit radiative transfer models. Ecosystems 7:454–467CrossRefGoogle Scholar
  28. Mayer H, Holst T, Schindler D (2002) Microclimate within beech stands - part I: photosynthetically active radiation. Forstwiss Centralbl 121:301–321CrossRefGoogle Scholar
  29. Mohren GMJ, Van de Veen JR (1995) Forest growth in relation to site conditions. Application of the model FORGRO to the Solling spruce site. Ecol Model 83:73–183Google Scholar
  30. Mohren GMJ, Bartelink HH, Jorritsma ITM, Kramer K (1993) A process-based growth model (FORGRO) for analysis of forest dynamics in relation to environmental factors. In: Broekmeijer M, Vos W, Koop HGJM (eds) European Forest Reserves. Proc. of the European Forest Reserves Workshop, 6–8 May 1992, The Netherlands. Pudoc, Wageningen, pp 273–280Google Scholar
  31. Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2002) Soil and water assessment tool—theoretical documentation. In: GSWRL. Texas Water Resources Institute, College StationGoogle Scholar
  32. Niinemets Ü, Lukjanova A (2003) Needle longevity, shoot growth and braching fre-quency in relation to site fertility and within-canopy light conditions in Pinus sylvestris. Ann For Sci 60:195–208CrossRefGoogle Scholar
  33. Nunn AJ (2005) Risiko-Einschätzung der chronisch erhöhten Ozonbelastung mittels “Free-Air”-Begasung von Buchen (Fagus sylvatica) und Fichten (Picea abies) eines forstlich begründeten Mischbestandes. Ecophysilogy of Plants, Department of Ecology, Life Science Center Weihenstephan. TUM, FreisingGoogle Scholar
  34. Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Leuchner M, Lütz C, Liu X, Winkler JB, Grams TEE, Häberle K-H, Werner H, Fabian P, Rennenberg H, Matyssek R (2005a) Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environ Pollut 137:494–506CrossRefPubMedGoogle Scholar
  35. Nunn AJ, Reiter IM, Häberle K-H, Langebartels C, Bahnweg G, Pretzsch H, Sandermann H, Matyssek R (2005b) Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies. Environ Pollut 136:365–369CrossRefPubMedGoogle Scholar
  36. Ogaya R, Peñuelas J (2004) Phenological patterns of Quercus ilex, Phillyrea latifolia, and Arbutus unedo growing under a field experimental drought. Ecoscience 11:263–270Google Scholar
  37. Parker GG, Davis MM, Chapotin SM (2002) Canopy light transmittance in Douglas-fir-western hemlock stands. Tree Physiol 22:147–157PubMedGoogle Scholar
  38. Patzner K (2004) Die Transpiration von Waldbäumen als Grundlage der Validierung und Modellierung der Bestandestranspiration in einem Wassereinzugsgebiet des Flusses ‘Ammer’. Lehrstuhl für Ökophysiologie der Pflanzen, Department für Ökologie. Life Science Center Weihenstephan, Technische Universität München, FreisingGoogle Scholar
  39. Pataki DE, Oren R (2003) Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Adv Water Resour 26:1267–1278CrossRefGoogle Scholar
  40. Peck A (2004) Hydrometeorologische und mikroklimatische Kennzeichen von Buchenwäldern. Berichte des Meteorologischen Institutes der Universität Freiburg Nr. 10, p 188Google Scholar
  41. Penning de Vries FWT, Jansen DM, ten Berge HFM, Bakema A (1989) Simulation of ecophysiological processes of growth in several annual crops. In: Simulation Monographs, vol 29. PUDOC, WageningenGoogle Scholar
  42. Pensa M, Sellin A (2002) Needle longevity of Scots pine in relation to foliar nitrogen content, specific leaf area, and shoot growth in different forest types. Can J For Res 32:1225–1231CrossRefGoogle Scholar
  43. Pensa M, Jalkanen R, Sellin A (2001) Age-dependent changes in needle-fascicle dynamics of Pinus sylvestris (L.) Scand J For Res 16:379–384Google Scholar
  44. Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Saarenmaa H, Väkevä J (1996) LIGNUM: a tree model based on simple structural units. Ann Bot 77:87–98CrossRefGoogle Scholar
  45. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134CrossRefGoogle Scholar
  46. Pretzsch H, Kahn M, Grote R (1998) Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches "Wachstum oder Parasitenabwehr?" im Kranzberger Forst. Forstwissen Centralbl 117:241–257CrossRefGoogle Scholar
  47. Pretzsch H, Grote R, Reineking B, Rötzer T, Seifert S (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087CrossRefPubMedGoogle Scholar
  48. Reich P (2001) Body size, geometry, longevity and metabolism: do plant leaves behave like animal bodies? Trends Ecol Evol 16:674–680CrossRefGoogle Scholar
  49. Reich P, Ellsworth D, Walters M, Vose J, Gresham C, Volin J (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969CrossRefGoogle Scholar
  50. Reiter IM, Häberle K-H, Nunn AJ, Heerdt C, Reitmayer H, Grote R, Matyssek R (2005) Competitive strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain. Oecologia 146:337–349CrossRefPubMedGoogle Scholar
  51. Rötzer T (2003) Modellierung der Baumkronenentwicklung mittels eines ökophysiologischen Prozessmodells. In: Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft Ref. 533, Bonn, pp 73–42Google Scholar
  52. Rötzer T (2005) Climate change, stand structure and the growth of forest stands. Ann Meteorol 41(1):40–43Google Scholar
  53. Rötzer T, Chmielewski FM (2001) Phenological maps of Europe. Clim Res 18:249–257CrossRefGoogle Scholar
  54. Rötzer T, Grote R, Pretzsch H (2004a) The timing of bud burst and its effects on tree growth. Int J Biometeorol 48:109–118CrossRefPubMedGoogle Scholar
  55. Rötzer T, Dittmar C, Elling W (2004b) A model for site specific estimation of the actual soil water content and the evapotranspiration in forest ecosystems. J Environ Hydrol 12(7):1–14Google Scholar
  56. Rötzer T, Grote R, Pretzsch H (2005) Effects of environmental changes on the vitality of forest stands. Eur J For Res 124:349–362Google Scholar
  57. Rötzer T, Seifert T, Pretzsch H (2009) Modelling above and below ground carbon dynamics in a mixed beech and spruce stand influenced by climate. Eur J For Res 128:171–182Google Scholar
  58. Roupsard O, Dauzat J, Nouvellon Y, Deveau A, Feintrenie L, Saint-Andre L, Mialet-Serra I, Braconnier S, Bonnefond JM, Berbigier P, Epron D, Jourdan C, Navarro M, Bouillet JP (2008) Cross-validating Sun-shade and 3D models of light absorption by a tree-crop canopy. Agric For Meteorol 148:549–564CrossRefGoogle Scholar
  59. Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications 1. Hydrological balance, canopy gas exchange, and primary production processes. Ecol Model 42:125–154CrossRefGoogle Scholar
  60. Sigurdsson BD (2001) Environmental control of carbon uptake and growth in a Populus trichocarpaplantation in Iceland, Acta Univ Agricult Suec, Silvestria 174Google Scholar
  61. Sparks TH, Jeffree EP, Jefree CE (2000) An examination of relationships between flowering times and temperature at the national scale using long-term phenological record from the UK. Int J Biometeorol 44:82–87CrossRefPubMedGoogle Scholar
  62. Stadt KJ, Lieffers VJ, Hall RJ, Messier C (2005) Spatially explicit modeling of PAR transmission and growth of Picea glauca and Abies balsamea in the boreal forests of Alberta and Quebec. Can J For Res 35:1–12CrossRefGoogle Scholar
  63. Stenberg P, Kangas T, Smolander H, Linder S (1999) Shoot structure, canopy openness, and light interception in Norway spruce. Plant Cell Environ 22:1133–1142CrossRefGoogle Scholar
  64. Valentine HT (1985) Tree-growth models: derivations employing the pipe-model theory. J Theor Biol 117:579–585CrossRefGoogle Scholar
  65. Wallin G, Skärby L, Sellden G (1990) Long-term exposure of Norway spruce, Picea abies (L.) Karst., to ozone in open-top chambers. New Phytol 115:335–344CrossRefGoogle Scholar
  66. Wegehenkel M, Jochheim H (2003) Modellierung des Wasserhaushaltes von Kiefernbeständen des Level-II-Programms in Brandenburg mit unterschiedlich komplexen Simulationsmodellen. Forstwissen Centralbl 122:302–317CrossRefGoogle Scholar
  67. White MA, Thornton PE, Running SW, Nemani RR (2000) Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: net primary production controls. Earth Interact 4(3):85CrossRefGoogle Scholar
  68. Wipfler P, Seifert T, Heerdt C, Werner H, Pretzsch H (2005) Growth of adult Norway Spruce (Picea abies [L.] Karst.) and European Beech (Fagus sylvatica L.) under free-air ozone fumigation. Plant Biol 7:611–618CrossRefPubMedGoogle Scholar
  69. Witowski J (1997) Gas exchange of the lowest branches of young Scots pine: a cost-benefit analysisof seasonal branch carbon budget. Tree Physiol 17:757–765PubMedGoogle Scholar
  70. Zimmermann R, Oren R, Schulze E-D, Werk K (1988) Performance of two Picea abies (L.) Karst. stands at different stages of decline. II. Photosynthesis and leaf conductance. Oecologia 76:513–518Google Scholar

Copyright information

© ISB 2010

Authors and Affiliations

  • Thomas Rötzer
    • 1
  • Michael Leuchner
    • 2
  • Angela J. Nunn
    • 3
  1. 1.Lehrstuhl für WaldwachstumskundeTU MünchenFreisingGermany
  2. 2.Fachgebiet für ÖkoklimatologieTU MünchenFreisingGermany
  3. 3.Lehrstuhl für Ökophysiologie der PflanzenTU MünchenFreisingGermany

Personalised recommendations