International Journal of Biometeorology

, Volume 54, Issue 2, pp 131–139 | Cite as

Modelling radiation fluxes in simple and complex environments: basics of the RayMan model

Original Paper

Abstract

Short- and long-wave radiation flux densities absorbed by people have a significant influence on their energy balance. The heat effect of the absorbed radiation flux densities is parameterised by the mean radiant temperature. This paper presents the physical basis of the RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environments. RayMan has the character of a freely available radiation and human-bioclimate model. The aim of the RayMan model is to calculate radiation flux densities, sunshine duration, shadow spaces and thermo-physiologically relevant assessment indices using only a limited number of meteorological and other input data. A comparison between measured and simulated values for global radiation and mean radiant temperature shows that the simulated data closely resemble measured data.

Keywords

RayMan model Radiation flux densities Mean radiant temperature Human-biometeorological indices Human thermal comfort 

References

  1. Badescu V (1997) Verification of some very simple clear and cloudy sky model to evaluate global solar irradiance. Sol Energy 61:251–264CrossRefGoogle Scholar
  2. Brühl Ch, Zdunkowski W (1983) An approximate calculation method for parallel and diffuse solar irradiances on inclined surfaces in the presence of obstructing mountain or buildings. Arch Meteorol Geophys Bioclimatol B 32:111–129CrossRefGoogle Scholar
  3. Bruse M, Fleer H (1998) Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ Model Softw 13:373–384CrossRefGoogle Scholar
  4. Ceballos JC, Moura GB de A (1997) Solar irradiation assessment using meteosat 4-Vis imagery. Solar Energy 60:209–219CrossRefGoogle Scholar
  5. Clark RP, Edholm OG (1985) Man and his thermal environment. Arnold, LondonGoogle Scholar
  6. Craggs C, Conway EM, Pearsall NM (2000) Statistical investigation of the optimal averaging time for solar irradiance on horizontal and vertical surfaces in the UK. Sol Energy 68:79–187CrossRefGoogle Scholar
  7. Czeplak G, Kasten F (1987) Parametrisierung der atmosphärischen Wärmestrahlung bei bewölktem Himmel. Meteorol Rdsch 40:184–187Google Scholar
  8. Diak GR, Bland WL, Mecikalski JR, Anderson MC (2000) Satellite-based estimates of longwave radiation for agricultural applications. Agric For Meteorol 103:349–355CrossRefGoogle Scholar
  9. Falkenberg G, Bolz HM (1949) Neue Bestimmung der Konstanten der Angströmschen Strahlungsformel. Z Meteorol 3:97Google Scholar
  10. Fanger PO (1972) Thermal comfort. McGraw-Hill, New YorkGoogle Scholar
  11. Frank SF, Gerding RB, O’Rourke PA, Terhung WH (1981) An urban radiation obstruction model. Bound-Lay Meteorol 20:259–264CrossRefGoogle Scholar
  12. Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictiveindex of human response to the thermal environment. ASHRAETrans 92:709–731Google Scholar
  13. Gopinathan KK (1992) Estimation of hourly global radiation and diffuse solar radiation from hourly sunshine duration. Sol Energy 48:3–5CrossRefGoogle Scholar
  14. Gueymard C (2000) Prediction and performance assessment of mean hourly global radiation. Sol Energy 68:285–303CrossRefGoogle Scholar
  15. Gul MS, Muneer T, Kambezidis HD (1998) Models for obtaining solar radiation from other meteorological data. Sol Energy 64:99–108CrossRefGoogle Scholar
  16. Höppe P (1993) Heat balance modelling. Experientia 49:741–746CrossRefPubMedGoogle Scholar
  17. Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75CrossRefPubMedGoogle Scholar
  18. ISO (1983) ISO 7730: Moderate thermal environments—Determination of the PMV and PPD indices and specification of the conditions of thermal comfort. International Organization for Standardization, GenevaGoogle Scholar
  19. Iziomon MG, Mayer H (2001) Performance of solar radiation models—a case study. Agric For Meteorol 110:1–11CrossRefGoogle Scholar
  20. Iziomon MG, Mayer H, Matzarakis A (2003) Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization. J Atmos Sol-Terr Phys 65:1107–1116CrossRefGoogle Scholar
  21. Jendritzky G, Nübler W (1981) A model analysing the urban thermal environment in physiologically significant terms. Arch Meteorol Geophys Bioclimatol B 29:313–326CrossRefGoogle Scholar
  22. Jendritzky G, Menz H, Schirmer H, Schmidt-Kessen W (1990) Methodik zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell). Beitr Akad Raumforsch Landesplan, No. 114Google Scholar
  23. Jessel W (1983) Die diffuse Himmelstrahlung. Eine vergleichende Darstellung der Bestrahlungsstärke bezogen auf eine kugelförmige und eine ebene horizontale Empfangsfläche. Arch Meteorol Geophys Bioclimatol B 32:23–52CrossRefGoogle Scholar
  24. Johansson E, Emmanuel R (2006) The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int J Biometeorol 51:119–133CrossRefPubMedGoogle Scholar
  25. Kaempfert W (1949) Zur Frage der Besonnung enger Strassen. Meteorol Rdsch 2:222–227Google Scholar
  26. Kaempfert W (1951) Ein Phasendiagramm der Besonnung. Meteorol Rdsch 4:141–144Google Scholar
  27. Kanda M, Kawai T, Nagakawa K (2005) A simple theoretical radiation scheme for regular building arrays. Bound-Lay Meteorol 114:71–90CrossRefGoogle Scholar
  28. Kasten F (1980) A simple parametrization of the pyrheliometric formula for determining the Linke turbidity factor. Meteorol Rdsch 33:124–127Google Scholar
  29. Kasten F, Young AT (1989) Revised optical air mass tables and approximation formula. Appl Optics 28:4735–4738CrossRefGoogle Scholar
  30. Kemmoku Y, Orita S, Nakagawa S, Sakakibara T (1999) Daily insolation forecasting using a multi-stage neural network. Sol Energy 66:193–199CrossRefGoogle Scholar
  31. Kerslake D McK (1972) The stress of hot environments. Cambridge University Press, CambridgeGoogle Scholar
  32. Littlefair P (2001) Daylight, sunlight and solar gain in the urban environment. Sol Energy 70:177–185CrossRefGoogle Scholar
  33. Marki A, Antonic O (1999) Annual models of monthly mean hourly direct, diffuse, and global radiation at ground. Meteorol Z NF 8:91–95Google Scholar
  34. Matzarakis A, Mayer H (2008) Importance of urban meteorological stations—the example of Freiburg, Germany. In: Mayer H (ed) Celebrating the 50Years of the Meteorological Institute, Albert-Ludwigs-University ofFreiburg, Germany. Ber Meteorol Inst Univ Freiburg Nr. 17, pp 101–110Google Scholar
  35. Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334CrossRefPubMedGoogle Scholar
  36. Mayer H (1993) Urban bioclimatology. Experientia 49:957–963CrossRefPubMedGoogle Scholar
  37. Mayer H, Holst J, Dostal P, Imbery F, Schindler D (2008) Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorol Z 17:241–250CrossRefGoogle Scholar
  38. Meek DW (1997) Estimation of maximum possible daily global radiation. Agric For Meteorol 87:223–241CrossRefGoogle Scholar
  39. Mohsen MA (1979) Solar radiation and courtyard house forms—I. A mathematical model. Build Environ 14:89–106CrossRefGoogle Scholar
  40. Mora-Lopez LL, Sidrach-de-Cardona M (1998) Multicaptive arma models to generate hourly series of global irradiation. Sol Energy 63:283–291CrossRefGoogle Scholar
  41. Monteith JL, Unsworth M (1990) Principles of environmental physics, 2nd edn. Elsevier, OxfordGoogle Scholar
  42. Nunez M, Eliasson I, Lindgren J (2000) Spatial variation of incoming longwave radiation in Göteborg, Sweden. Theor Appl Climatol 67:181–192CrossRefGoogle Scholar
  43. Oke TR (1987) Boundary layer climates. Methuen, LondonGoogle Scholar
  44. Olseth JA, Skartveit A (1993) Characteristics of hourly global irradiance modelled from cloud data. Sol Energy 51:197–204CrossRefGoogle Scholar
  45. Power H (2001) Estimating atmospheric turbidity from climate data. Atmos Environ 35:125–134CrossRefGoogle Scholar
  46. Prata AJ (1996) A new long-wave formula for estimating downward clear-sky radiation at the surface. Q J R Meteorol Soc 122:1127–1151CrossRefGoogle Scholar
  47. Revfeim KJA (1997) On the relationship between radiation and mean daily sunshine. Agric For Meteorol 86:183–191CrossRefGoogle Scholar
  48. Roderick ML (1999) Estimating the diffuse component from daily and monthly measurements of global radiation. Agric For Meteorol 95:169–185CrossRefGoogle Scholar
  49. Salsibury JW, D’Aria DM (1992) Emissivity of terrestrial material in the 8–14 μm atmospheric window. Remote Sens Environ 42:83–106CrossRefGoogle Scholar
  50. Santamouris M, Mihalakakou G, Psiloglou B, Eftaxias G, Asimakopoulos DN (1999) Modeling the global irradiation on the earth´s surface using atmospheric deterministic and intelligent data-driven techniques. J Climate 12:3105–3116CrossRefGoogle Scholar
  51. Sen Z (1998) Fuzzy algorithm for estimation of solar radiation from sunshine duration. Sol Energy 63:39–49CrossRefGoogle Scholar
  52. Teller J, Azar S (2001) Townscope II—a computer system to support solar access decision-making. Sol Energy 70:187–200CrossRefGoogle Scholar
  53. Terjung WH, Louie S (1974) A climatic model of urban energy budgets. Geogr Anal 6:341–367Google Scholar
  54. Thorsson S, Lindqvist M, Lindqvist S (2004) Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. Int J Biometeorol 48:149–156CrossRefPubMedGoogle Scholar
  55. Thorsson S, Lindberg F, Eliasson I, Holmer B (2007) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int J Climatol 27:1983–1993CrossRefGoogle Scholar
  56. Valko P (1966) Die Himmelsstrahlung in ihrer Beziehung zu verschiedenen Parametern. Arch Meteorol Geophys Bioclimatol B14:337–359Google Scholar
  57. VDI (1994) VDI 3789, Part 2: Environmental meteorology. Interactions between atmosphere and surfaces; calculation of the short- and long wave radiation. Beuth, BerlinGoogle Scholar
  58. VDI (1998) VDI 3787, Part I: Environmental Meteorology, Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning at regional level. Part I: Climate. Beuth, BerlinGoogle Scholar
  59. VDI (2001) VDI 3789, Part 3: Environmental Meteorology, interactions between atmosphere and surfaces; calculation of spectral irradiances in the solar wavelength range. Beuth, BerlinGoogle Scholar
  60. Winslow CEA, Herrington LP, Gagge AP (1936) A new method of particional calorimetry. Am J Physiol 116:641–655Google Scholar
  61. Zdunkowski W, Brühl Ch (1983) A fast approximate method for the calculation of the infrared radiation balance within city street cavities. Arch Meteorol Geophys Bioclimatol B 33:237–241CrossRefGoogle Scholar

Copyright information

© ISB 2009

Authors and Affiliations

  1. 1.Meteorological InstituteAlbert-Ludwigs-University of FreiburgFreiburgGermany

Personalised recommendations