International Journal of Biometeorology

, Volume 54, Issue 1, pp 45–61 | Cite as

Vertical gradient of climate change and climate tourism conditions in the Black Forest

  • Christina Endler
  • Karoline Oehler
  • Andreas Matzarakis
Original Paper

Abstract

Due to the public discussion about global and regional warming, the regional climate and the modified climate conditions are analyzed exemplarily for three different regions in the southern Black Forest (southwest Germany). The driving question behind the present study was how can tourism adapt to modified climate conditions and associated changes to the tourism potential in low mountain ranges. The tourism potential is predominately based on the attractiveness of natural resources being climate-sensitive. In this study, regional climate simulations (A1B) are analyzed by using the REMO model. To analyze the climatic tourism potential, the following thermal, physical and aesthetic parameters are considered for the time span 1961–2050: thermal comfort, heat and cold stress, sunshine, humid–warm conditions (sultriness), fog, precipitation, storm, and ski potential (snow cover). Frequency classes of these parameters expressed as a percentage are processed on a monthly scale. The results are presented in form of the Climate-Tourism-Information-Scheme (CTIS). Due to warmer temperatures, winters might shorten while summers might lengthen. The lowland might be more affected by heat and sultriness (e.g., Freiburg due to the effects of urban climate). To adapt to a changing climate and tourism, the awareness of both stakeholders and tourists as well as the adaptive capability are essential.

Keywords

Physiologically equivalent temperature Climatic tourism potential REMO CTIS Low mountain ranges 

References

  1. Becken S, Hay J (2007) Tourism and climate change – risks and opportunities. Channel View, Clevedon, UKGoogle Scholar
  2. Beniston M (1997) Variations of snow depth and duration in the Swiss Alps over the last 50 years: links to changes in large-scale climatic forcing. Clim Change 36:281–300CrossRefGoogle Scholar
  3. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31CrossRefGoogle Scholar
  4. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate modeling projection. Clim Change 81:71–95CrossRefGoogle Scholar
  5. Besancenot JP (1989) Climat et tourisme. Masson, ParisGoogle Scholar
  6. Besancenot JP, Mounier J, Lavenne J (1978) Les conditions climatiques du tourisme littoral: uneméthode de recherche compréhensive. Norois 99:357–382CrossRefGoogle Scholar
  7. Breiling M, Charamza P (1999) The impact of global warming on winter tourism and skiing: a regionalised model for Austrian snow conditions. Reg Environ Change 1:4–14CrossRefGoogle Scholar
  8. Brown RD, Mote PW (2009) The response of Northern Hemisphere snow cover to a changing climate. J Clim 22:2124–2145CrossRefGoogle Scholar
  9. de Freitas CR (2003) Tourism Climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int J Biometeorol 48:45–54CrossRefGoogle Scholar
  10. Elsasser H, Bürki R (2002) Climate change as a threat to tourism in the Alps. Clim Res 20:253–257CrossRefGoogle Scholar
  11. Endler C, Matzarakis A (2008) Climatic tourism potential in the North Sea and Black Forest – a comparison of REMO and DWD data. Ber Meteorol Inst Univ Freiburg 17:179–189Google Scholar
  12. Enke W (2003) Anwendung einer Wetterlagenklassifikation für Süddeutschland auf Kontrolllauf und Szenario eines transienten ECHAM4 Klimasimulationslaufes (Szenario B2) zur Abschätzung regionaler Klimaänderungen für Süddeutschland. 2003 (Werkvertrag B. Nr. 50000099 KLIWA) – ForschungsberichtGoogle Scholar
  13. Falarz M (2002) Long-term variability in reconstructed and observed snow cover over the last 100 winter seasons in Cracow and Zakopane (southern Poland). Clim Res 19:247–256CrossRefGoogle Scholar
  14. Feldmann H, Früh B, Schädler G, Panitz HJ, Keuler K, Jacob D, Lorenz P (2008) Evaluation of the precipitation for South-western Germany from high resolution simulations with regional climate models. Meteorol Z 17(4):455–465CrossRefGoogle Scholar
  15. Finnis J, Holland MM, Serreze MC, Cassano JJ (2007) Response of Northern Hemisphere extratropical cyclone activity and associated precipiation to climate change, as represented by the Community Climate System Model. J Geophys Res 112: doi:10.1029/2006JG000286
  16. Gómez Martín MB (2004) An evaluation of the tourist potential of the climate in Catalonia (Spain): a regional study. Geogr Ann 86A(3):249–264CrossRefGoogle Scholar
  17. Harlfinger O (1991) Holiday biometeorology: a study of Palma de Majorca, Spain. GeoJournal 25:377–381CrossRefGoogle Scholar
  18. Höppe P (1999) The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75CrossRefGoogle Scholar
  19. IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT et al (eds) Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  20. IPCC (2007) Climate change 2007: The scientific basis. In: Solomon S, Qin D et al (eds) Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  21. Jacob D (2001) A note on the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRefGoogle Scholar
  22. Jacob D, Göttel H, Lorenz P, Pfeifer S (2006) Regional climate modelling. Terra Flops 8:4Google Scholar
  23. Jacob D, Bäring L, Christensen OB, Christensen JH, De Castro M, Deque M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sanchez E, Schär C, Seneviratne S, Somot S, Van Ulden A, Van Den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52CrossRefGoogle Scholar
  24. Jacob D, Göttel H, Kotlarski S, Lorenz P, Sieck K (2008) Klimaauswirkungen und Anpassung in Deutschland – Phase 1: Erstellung regionaler Klimaszenarien für Deutschland. UmweltbundesamtGoogle Scholar
  25. Jendritzky G, Bucher K, Laschewski G, Schultz E, Staiger H (1998) Medizinische Klimatologie. In: Gutenbrunner C, Hildebrandt G (eds) (1998) Handbuch der Balneologie und medizinischen Klimatologie. Springer, Berlin, pp 477–598Google Scholar
  26. Kharin VV, Zwiers FW (2000) Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean GCM. J Climate 13(21):3670–3688CrossRefGoogle Scholar
  27. KLIWA (2006) Regionale Klimaszenarien für Süddeutschland – Abschätzung der Auswirkung auf den Wasserhaushalt. KLIWA-Berichte, Heft 9Google Scholar
  28. Kulinat K, Steinecke A (1984) Geographie des Freizeit- und Fremdenverkehrs. Erträge der Forschung Band 212, DarmstadtGoogle Scholar
  29. Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26:713–728CrossRefGoogle Scholar
  30. Lin TP, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290Google Scholar
  31. Majewski D (1991) The Europa-Modell of the Deutscher Wetterdienst. ECMWF Seminar on Numerical Methods in Atmospheric Models 2:147–191Google Scholar
  32. Matzarakis A (2006) Weather- and Climate-Related Information for Tourism. Tourism Hospitality Planning Dev 3:99–115CrossRefGoogle Scholar
  33. Matzarakis A (2007) Assessment method for climate and tourism based on daily data. In: Matzarakis A, de Freitas CR, Scott D (eds) Developments in tourism climatology, pp 52–58Google Scholar
  34. Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO Newsl 18:7–10Google Scholar
  35. Matzarakis A, Rutz F, Mayer H (2007a) Modelling radiation fluxes in simple and complex environment-application of the RayMan model. Int J Biometeorol 51:323–334CrossRefGoogle Scholar
  36. Matzarakis A, Matuschek O, Neumcke R, Rutz F, Zalloom M (2007b) Climate change scenarios and tourism - how to handle and operate with data. In: Matzarakis A, de Freitas CR, Scott D (eds) Developments in tourism climatology, pp 240–245Google Scholar
  37. Mieczkowski Z (1985) The tourism climatic index: a method of evaluating world climates for tourism. Géog Can 29(3):220–233CrossRefGoogle Scholar
  38. Müller HR, Weber F (2007) Klimaveränderungen und Tourismus. Szenarienanalyse für das Berner Oberland 2030. FIF Universität Bern, 2007Google Scholar
  39. OECD (2007) Climate change in the european alps - adapting winter tourism and natural hazards management. OECDGoogle Scholar
  40. Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29:195–210CrossRefGoogle Scholar
  41. PRUDENCE (2007) Prediction of regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects: the PRUDENCE Project. Clim Change 81(Suppl 1):1–371Google Scholar
  42. Roth R, Türk S, Armbruster F, Polenz R, Velten A, Schrahe C (2001) Masterplan Wintersport im Sauerland und Siegerland-Wittgenstein. Stufe 1, räumliche Entwicklungskonzep-tion und Marktanalyse, KölnGoogle Scholar
  43. Roth R, Prinz N, Krämer A, Schneider C, Schönbein J (2005) Nachhaltige Entwicklung des Schneesports und des Wintersporttourismus in Baden-Württemberg. Ein Leitfaden für Politik, Sport, Kommunen und touristische Leistungsträger. Wirtschaftsministerium Baden-WürttembergGoogle Scholar
  44. Scharlau K (1943) Die Schwüle als meßbare Größe. Bioklimat Beibl 10:19Google Scholar
  45. Schönbein J, Schneider C (2003) Snow cover variability in the Black Forest region as an example of a German low mountain range under the influence of climate change. Geophysical Research Abstracts. European Geophysical Union, Joint Assembly, Nice, France, 7–11. April 2003.Google Scholar
  46. Stock M (2005) KLARA – Klimawandel, Auswirkungen, Risiken und Anpassung. PIK Report 99Google Scholar
  47. Sturm M, Holmgren J, Liston GE (1995) A seasonal snow cover classification system for local to global applications. J Clim 8:1261–1283CrossRefGoogle Scholar
  48. UNEP (2007) Global outlook for snow and ice. UNEP Arendal/Nairobi 2007Google Scholar
  49. UNWTO (2008) Climate Change and Tourism. Responding to global challenges. UNWTOGoogle Scholar
  50. VDI (1998) VDI 3787 Blatt 2, Methoden zur human-biometeorologischen Bewertung von Klima und Lufthygiene für die Stadt- und Regionalplanung. Teil I: Klima. Beuth, BerlinGoogle Scholar
  51. Werner PC, Gerstengarbe F-W (1997) A proposal for the development of climate scenarios. Clim Res 8(2):171–182CrossRefGoogle Scholar
  52. Wilmanns O (2001) Exkursionsführer Schwarzwald - eine Einführung in Landschaft und Vegetation. Eugen Ulmer, StuttgartGoogle Scholar
  53. Zaninovic K, Matzarakis A (2009) The Biometeorological Leaflet as a means conveying climatological information to tourists and the tourism industry. Int J Biometeorol 53:369–374CrossRefGoogle Scholar
  54. Zebisch M, Grothmann T, Schröter D, Hasse C, Fritsch U, Cramer W (2005) Climate change in Germany – vulnerability and adaptation of climate sensitive sectors. Climate Change 10/05. Umweltbundesamt, DessauGoogle Scholar
  55. Yapp G, McDonald N (1978) A recreation climate model. J Environ Manag 7:235–252Google Scholar

Copyright information

© ISB 2009

Authors and Affiliations

  • Christina Endler
    • 1
  • Karoline Oehler
    • 1
  • Andreas Matzarakis
    • 1
  1. 1.Meteorological InstituteAlbert-Ludwigs-University of FreiburgFreiburgGermany

Personalised recommendations