International Journal of Biometeorology

, Volume 54, Issue 1, pp 23–36 | Cite as

Water fluxes within beech stands in complex terrain

  • Jutta Holst
  • Rüdiger Grote
  • Christine Offermann
  • Juan Pedro Ferrio
  • Arthur Gessler
  • Helmut Mayer
  • Heinz Rennenberg


We investigated the water balances of two beech stands (Fagus sylvatica L.) on opposite slopes (NE, SW) of a narrow valley near Tuttlingen in the southern Swabian Jura, a low mountain range in Southwest Germany. Our analysis combines results from continuous measurements of forest meteorological variables significant to the forest water balance, stand transpiration (ST) estimates from sap flow measurements, and model simulations of microclimate and water fluxes. Two different forest hydrological models (DNDC and BROOK90) were tested for their suitability to represent the particular sites. The investigation covers the years 2001–2007. Central aims were (1) to evaluate meteorological simulations of variables below the forest canopy, (2) to evaluate ST, (3) to quantify annual water fluxes for both beech stands using the evaluated hydrological models, and (4) to analyse the model simulations with regard to assumptions inherent in the respective model. Overall, both models were very well able to reproduce the observed dynamics of the soil water content in the uppermost 30 cm. However, the degree of fit depended on the year and season. The comparison of experimentally determined ST within the beech stand on the NE-slope during the growing season of 2007 with simulated transpiration did not yield a reliable statistical relationship. The simulation of water fluxes for the beech stand on the NE- and SW-slopes showed similar results for vegetation-related fluxes with both models, but different with respect to runoff and percolation flows. Overall, the higher evaporation demand on the warmer SW-slope did not lead to a significantly increased drought stress for the vegetation but was reflected mainly in decreased water loss from the system. This finding is discussed with regard to potential climate change and its impact on beech growth.


Water fluxes Beech stand Swabian Jura/SW Germany Forest meteorological measurements Sap flow measurements DNDC BROOK90 Modelling 



Funding of this work by the German Research Foundation / Deutsche Forschungsgemeinschaft (DFG) within the framework of the Beech Research Group FOR 788/1 under contract numbers BU 1173/8-1, GE 1090/5-1, MA 749/21-1 and RE 515/27-1 is gratefully acknowledged. J.P.F. was granted a Marie Curie Intra-European Fellowship (6th Framework Program, EU). We thank Gerhard Fernbach and Dirk Redepenning for assistance in the field. Furthermore, we thank Thomas Holst, Lund University, Sweden, for forest meteorological discussions related to the Tuttlingen site.


  1. Bolte A, Czajkowski T, Kompa T (2007) The north-eastern distribution range of European beech—a review. Forestry 80:413–429CrossRefGoogle Scholar
  2. Brandes E, Wenninger J, Königer P, Schindler D, Rennenberg H, Leibundgut C, Mayer H, Gessler A (2007) Assessing environmental and physiological controls over water relations in a Scots pine (Pinus sylvestris L.) stand through analyses of stable isotope composition of water and organic matter. Plant Cell Environ 30:113–127CrossRefGoogle Scholar
  3. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology Papers, Colorado State UniversityGoogle Scholar
  4. Camargo AP, Marin FR, Sentelhas PC, Picini AG (1999) Adjust of the Thornthwaite's method to estimate the potential evapotranspiration for arid and superhumid climates, based on daily temperature amplitude. Bras Agrometeorol 7:251–257Google Scholar
  5. Čermák J, Kučera J, Nadezhdina N (2004) Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18:529–546CrossRefGoogle Scholar
  6. Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology. Bioscience 49:288–297CrossRefGoogle Scholar
  7. DVWK (1996) Workshop Regionalisierung Meteorologischer und Hydrologischer Parameter. Deutscher Verband für Wasserwirtschaft und Kulturbau, BonnGoogle Scholar
  8. Ehleringer JR, Roden JR, Dawson TE (2000) Assessing ecosystem-level water relations through stable isotope ratio analyses. In: Sala OE, Jackson R, Mooney HA, Howarth R (eds) Methods in ecosystem science. Springer, New York, pp 181–198Google Scholar
  9. Ellenberg H (1996) Vegetation mitteleuropas mit den Alpen. Eugen Ulmer, StuttgartGoogle Scholar
  10. Federer CA, Vörösmarty C, Fekete B (2003) Sensitivity of annual evaporation to soil and root properties in two models of contrasting complexity. J Hydrol 4:1276–1290Google Scholar
  11. Fotelli NM, Gessler A, Peuke AD, Rennenberg H (2001) Drought affects the competitive interaction between Fagus sylvatica seedlings and an early successional species, Rubus fruticosus: responses of growth, water status and δ13C composition. New Phytol 151:427–435CrossRefGoogle Scholar
  12. Gebauer T, Horna V, Leuschner C (2008) Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species. Tree Physiol 28:1821–1830Google Scholar
  13. Gessler A, Schrempp S, Matzararkis A, Mayer H, Rennenberg H, Adams MA (2001) Radiation modifies the effect of water availability on the carbon isotope composition of Beech (Fagus sylvatica). New Phytol 150:653–664CrossRefGoogle Scholar
  14. Gessler A, Keitel C, Nahm M, Rennenberg H (2004) Water shortage affects the water and nitrogen balance in Central European beech forests. Plant Biol 6:289–298CrossRefGoogle Scholar
  15. Gessler A, Jung K, Gasche R, Papen H, Heidenfelder A, Börner E, Metzler B, Augustin S, Hildebrand E, Rennenberg H (2005a) Climate and forest management influence nitrogen balance of beech forests: microbial N transformations and N uptake by mycorrhizal roots. Eur J For Res 124:95–111Google Scholar
  16. Gessler A, Rienks M, Rennenberg H (2005b) Radial variation of sap flow densities in the sapwood of beech trees (Fagus sylvatica). Phyton 45:257–266Google Scholar
  17. Gessler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11CrossRefGoogle Scholar
  18. Glavac V, Koenies H, Jochheim H, Ebben U (1989) Mineralstoffe im Xylemsaft der Buche und ihre jahreszeitlichen Konzentrationsveränderungen entlang der Stammhöhe. Angew Bot 63:471–486Google Scholar
  19. Granier A (1985) Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann Sci For 42:193–200CrossRefGoogle Scholar
  20. Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3:309–320Google Scholar
  21. Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol 100:291–308CrossRefGoogle Scholar
  22. Granier A, Biron P, Bréda N, Pontailler J-Y, Saugier B (1996) Transpiration of trees and forest stands: short- and long-term monitoring using sap flow methods. Glob Chang Biol 2:265–274CrossRefGoogle Scholar
  23. Granier A, Reichstein M, Breda N, Janssens IA, Falge E, Ciais P, Grunwald T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G, Heinesch B, Ilvesniemi H, Keronen P, Knohl A, Köstner B, Lagergren F, Lindroth A, Longdoz B, Loustau D, Mateus J, Montagnani L, Nys C, Moors E, Papale D, Peiffer M, Pilegaard K, Pita G, Pumpanen J, Rambal S, Rebmann C, Rodrigues A, Seufert G, Tenhunen J, Vesala T, Wang Q (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year 2003. Agric For Meteorol 142:123–145CrossRefGoogle Scholar
  24. Grimmond CSB, Robeson SM, Schoof JT (2000) Spatial variability of micro-climatic conditions within a mid-latitude deciduous forest. Climate Res 15:137–149CrossRefGoogle Scholar
  25. Grote R (1998) Integrating dynamic morphological properties into forest growth modeling. II. Allocation and mortality. For Ecol Manage 111:193–210CrossRefGoogle Scholar
  26. Grote R (2007) Sensitivity of volatile monoterpene emission to changes in canopy structure—a model based exercise with a process-based emission model. New Phytol 173:550–561CrossRefGoogle Scholar
  27. Grote R, Pretzsch H (2002) A model for individual tree development based on physiological processes. Plant Biol 4:167–180CrossRefGoogle Scholar
  28. Grote R, Mayrhofer S, Fischbach RJ, Steinbrecher R, Staudt M, Schnitzler J-P (2006) Process-based modelling of isoprenoid emissions from evergreen leaves of Quercus ilex (L.). Atmos Environ 40:152–165CrossRefGoogle Scholar
  29. Grote R, Lehmann E, Brümmer C, Brüggemann N, Szarzynski J, Kunstmann H (2009a) Modelling and observation of biosphere-atmosphere interactions in natural savannah in Burkina Faso, West Africa. Phys Chem Earth 34:251–260Google Scholar
  30. Grote R, Lavoir AV, Rambal S, Staudt M, Zimmer I, Schnitzler J-P (2009b) Modelling the drought impact on monoterpene fluxes from an evergreen Mediterranean forest canopy. Oecologia . doi: 10.1007/s00442-009-1298-9 Google Scholar
  31. Hacke U, Sauter JJ (1995) Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera. J Exp Bot 46:1177–1183CrossRefGoogle Scholar
  32. Hammel K, Kennel M (2001) Characterisation and analysis of the water availability and the water balance of forest sites in Bavaria using the simulation model BROOK90. Forstl Forschungsber München No. 185Google Scholar
  33. Holst T, Mayer H (2005) Radiation components of beech stands in southwest Germany. Meteorol Z 14:107–115CrossRefGoogle Scholar
  34. Holst T, Mayer H, Schindler D (2004a) Microclimate within beech stands—part II: thermal conditions. Eur J For Res 123:13–28Google Scholar
  35. Holst T, Hauser S, Kirchgäßner A, Matzarakis A, Mayer H, Schindler D (2004b) Measuring and modelling plant area index in beech stands. Int J Biometeorol 48:192–201CrossRefGoogle Scholar
  36. Holst T, Rost J, Mayer H (2005) Net radiation balance for two forested slopes on opposite sides of a valley. Int J Biometeorol 49:275–284CrossRefGoogle Scholar
  37. Holst J, Holst T, Mayer H (2008) Analyses of water balance components of beech stands in south-western Germany using BROOK90. Rep Meteor Inst Univ Freiburg No 17:61–68Google Scholar
  38. IPCC (2007) Climate change. The physical science basis. Contribution of WG I to the Fourth assessment report of IPCC. University Press, CambridgeGoogle Scholar
  39. Jarvis PG (1976) The interpretation of leaf water potential and stomatal conductance found in canopies in the field. Phil Trans R Soc Lond B 273:593–610CrossRefGoogle Scholar
  40. Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Chang Biol 12:2163–2174CrossRefGoogle Scholar
  41. Keitel C, Adams MA, Holst T, Matzarakis A, Mayer H, Rennenberg H, Gessler A (2003) Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of european beech (Fagus sylvatica L.). Plant Cell Environ 26:1157–1168CrossRefGoogle Scholar
  42. Kelliher FM, Leuning R, Raupach MR, Schulze E-D (1995) Maximum conductances for evaporation from global vegetation types. Agric For Meteorol 73:1–16CrossRefGoogle Scholar
  43. Kenk G, Guehne S (2001) Management of transformation in central Europe. For Ecol Manage 151:107–119CrossRefGoogle Scholar
  44. Klaassen W, Lankreijer HJM, Veen AWL (1996) Rainfall interception near a forest edge. J Hydrol 185:349–361CrossRefGoogle Scholar
  45. Köstner B, Biron P, Siegwolf R, Granier A (1996) Estimates of water vapor flux and canopy conductance of Scots pine at the tree level utilizing different xylem sap flow methods. Theor Appl Climatol 53:115–122CrossRefGoogle Scholar
  46. Kubota M, Tenhunen J, Zimmermann R, Schmidt M, Kakubari Y (2005) Influence of environmental conditions on radial patterns of sap flux density of a 70-year Fagus crenata trees in the Naeba Mountains, Japan. Ann For Sci 62:289–296CrossRefGoogle Scholar
  47. Lalic B, Mihailovic DT (2002) A new approach in parameterisation of momentum transport inside and above forest canopy under neutral conditions. Proceedings of the First Biennial Meeting of the International Environmental Modelling and Software Society 2002:436–441Google Scholar
  48. Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J Geophys Res 97:9759–9776Google Scholar
  49. Long JN, Dean TJ, Roberts SD (2004) Linkages between silviculture and ecology: examination of several important conceptual models. For Ecol Manage 200:249–261CrossRefGoogle Scholar
  50. Löw M, Herbinger K, Nunn AJ, Häberle K-H, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548CrossRefGoogle Scholar
  51. Mäkelä A (2003) Process-based modelling of tree and stand growth: towards a hierarchical treatment of multiscale processes. Can J For Res 33:398–409CrossRefGoogle Scholar
  52. Martin MJ, Stirling CM, Humphries SW, Long SP (2000) A process-based model to predict the effects of climatic change on leaf isoprene emission rates. Ecol Modell 131:161–174CrossRefGoogle Scholar
  53. Mayer H (1979) Microclimatic investigations in the south Bavarian mountain mixed forest. Arch Met Geoph Biokl, Ser B 27:247–262CrossRefGoogle Scholar
  54. Mayer H, Holst T, Schindler D (2002) Microclimate within beech stands—part I: photosynthetically active radiation. Forstw Cbl 121:301–321CrossRefGoogle Scholar
  55. Meier IC, Leuschner Ch (2008) Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech. Tree Physiol 28:297–309Google Scholar
  56. Meiresonne L, Sampson DA, Kowalski AS, Janssens IA, Nadezhdina N, Cermák J, van Slycken J, Ceulemans R (2003) Water flux estimates from a Belgian Scots pine stand: a comparison of different approaches. J Hydrol 270:230–252CrossRefGoogle Scholar
  57. Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151CrossRefGoogle Scholar
  58. Monteith JL (1965) Evaporation and environment. In: Fogg GE (ed) The state and movement of water in living organisms. Academic, London, pp 205–234Google Scholar
  59. Moosmayer H-U (2002) Langfristige regionale Waldbauplanung in Baden-Württemberg—Grundlagen und Ergebnisse. Landesforstverwaltung Baden-Württemberg, StuttgartGoogle Scholar
  60. Pereira AR, Pruitt WO (2004) Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. Agric Water Manage 66:251–257CrossRefGoogle Scholar
  61. Peuke AD, Schraml C, Hartung W, Rennenberg H (2002) Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytol 154:373–387CrossRefGoogle Scholar
  62. Pretzsch H, Grote R, Reineking B, Rötzer T, Seifert S (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087CrossRefGoogle Scholar
  63. Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, Kropp JP, Menzel A (2006) Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci 63:569–577CrossRefGoogle Scholar
  64. Renaud V, Rebetez M (2008) Comparison between open-site and below-canopy climatic conditions in Switzerland during the exceptionally hot summer of 2003. Agric For Meteorol . doi: 10.1016/j.agrformet.2008.11.006 Google Scholar
  65. Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS, Gessler A (2006) Physiological responses of forest trees to heat and drought. Plant Biol 8:556–571CrossRefGoogle Scholar
  66. Rossing WAH, Zander P, Josien E, Groot JCJ, Meyer BC, Knierim A (2007) Integrative modelling approaches for analysis of impact of multifunctional agriculture: a review for France, Germany and The Netherlands. Agric Ecosyst Environ 120:41–57CrossRefGoogle Scholar
  67. Roxburgh SH, Davies ID (2006) COINS: an integrative modelling shell for carbon accounting and general ecological analysis. Environ Modell Software 21:359–374CrossRefGoogle Scholar
  68. Schönwiese C-D, Staeger T, Trömel S (2004) The hot summer 2003 in Germany—some preliminary results of a statistical time series analysis. Meteorol Z 13:343–347CrossRefGoogle Scholar
  69. Schume H, Jost G, Hager H (2004) Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J Hydrol 289:258–274CrossRefGoogle Scholar
  70. Schume H, Hager H, Jost G (2005) Water and energy exchange above a mixed European Beech–Norway Spruce forest canopy: a comparison of eddy covariance against soil water depletion measurement. Theor Appl Climatol 81:87–100CrossRefGoogle Scholar
  71. Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops—an energy combination theory. Q J R Meteorol Soc 111:839–855CrossRefGoogle Scholar
  72. Staelens J, de Schrijver A, Verheyen K, Verhoest NEC (2006) Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover. J Hydrol 330:651–662CrossRefGoogle Scholar
  73. Staelens J, de Schrijver A, Verheyen K, Verhoest NEC (2008) Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrol Process 22:33–45CrossRefGoogle Scholar
  74. Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Publ Climatol 10:183–311Google Scholar
  75. Valentine HT, Mäkelä A (2005) Bridging process-based and empirical approaches to modeling tree growth. Tree Physiol 25:769–779Google Scholar
  76. Van Nes EH, Scheffer M (2005) A strategy to improve the contribution of complex simulation models to ecological theory. Ecol Modell 185:153–164CrossRefGoogle Scholar
  77. Wellpott A, Imbery F, Schindler D, Mayer H (2005) Simulation of drought for a Scots pine forest (Pinus sylvestris L.) in the southern upper Rhine plain. Meteorol Z 14:143–150CrossRefGoogle Scholar
  78. Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi D, Wullschleger SD (2001) A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric For Meteorol 106:153–168CrossRefGoogle Scholar
  79. Zheng D, Chen J, Song B, Xu M, Sneed P, Jensen R (2000) Effects of silvicultural treatments on summer forest microclimate in southeastern Missouri Ozarks. Clim Res 15:45–59CrossRefGoogle Scholar
  80. Zimmer W, Brüggemann N, Emeis S, Giersch C, Lehning A, Steinbrecher R, Schnitzler J-P (2000) Process-based modelling of isoprene emission by oak leaves. Plant Cell Environ 23:585–595CrossRefGoogle Scholar

Copyright information

© ISB 2009

Authors and Affiliations

  • Jutta Holst
    • 1
  • Rüdiger Grote
    • 2
  • Christine Offermann
    • 3
  • Juan Pedro Ferrio
    • 3
  • Arthur Gessler
    • 3
  • Helmut Mayer
    • 1
  • Heinz Rennenberg
    • 3
  1. 1.Meteorological InstituteAlbert-Ludwigs-University of FreiburgFreiburgGermany
  2. 2.Institute of Meteorology and Climate Research, Atmospheric Environmental Research DivisionResearch Center KarlsruheGarmisch-PartenkirchenGermany
  3. 3.Institute of Forest Botany and Tree PhysiologyAlbert-Ludwigs-University of FreiburgFreiburgGermany

Personalised recommendations